

Page 64
Notes:
conferenceseries
.com
Volume 6, Issue 8 (Suppl)
J Biotechnol Biomater
ISSN: 2155-952X JBTBM, an open access journal
Bio America 2016
November 28-30, 2016
November 28-30, 2016 San Francisco, USA
13
th
Biotechnology Congress
Eman BellahAly Ramadan, J Biotechnol Biomater 2016, 6:8(Suppl)
http://dx.doi.org/10.4172/2155-952X.C1.068Molecular adaptation of a metagenome-derived mercuric reductase from Kebrit Deep brine environment
in the Red Sea to high salinity
Eman Bellah Aly Ramadan
The American University in Cairo, Egypt
R
ed Sea Kebrit brine (1490m) possesses unique environmental conditions, characterized by high salinity 4 M, temperature 23.4 °C,
elevated concentration of heavy metals, no oxygen and high hydrostatic pressure. In order to highlight the structural-functional
relationship of enzymes adaptation to such extreme environmental conditions, DNA isolated from the microbial community of Kebrit
brine is subjected to 454-pyrosequencing and a metagenomic dataset is established and looked for enzymes involved in mercury
detoxifications. An operon containing the genes essential for mercury detoxification was identified in our 454-pyrosequencing
metagenomic dataset. A total of 28
merA
orthologs were identified in Kebrit brine metagenomics library, choosing two
merA
genes:
One representing the consensus sequence (K35-NH) and the other (K09-H) have amino acid substitutions replacing non-polar with
acidic amino acids. Kinetic parameters were measured at the NaCl concentration that gave maximum activity for the respective
enzyme. K09-Hmaximal activation is observed at 2 Molar NaCl and retains 65% of its activity at 3 Molar. K35-NH showed maximum
activity at 0 Molar NaCl which is equivalent to 52% activity of K09-H at 4 M. Both and K35-NH retained 90% of their activity after
10 minutes incubation at 65 oC. Comparing the kinetics of both enzyme suggested that the amino acids difference between the
two orthologs are acquired evolutional structural adaptation to confer site-specific level of halophilicity to survive in such extreme
environment as Kebrit Deep. This halophilic feature if used properly is a potential for many industrial and bioremediation applications
in detoxification of mercury.
Biography
Eman Bellah Aly Ramadan has completed her Bachelor of Medicine, Bachelor of Surgery (MBBC) in 1997 and MSc degree in Pediatrics fromAin Shams University,
Faculty of Medicine in 2002. She has received MSc in Biotechnology from American University in Cairo, Egypt in 2011. She is currently a PhD candidate of
American University in Cairo, Egypt.
emanbellah@aucegypt.edu