Volume 4, Issue 3 (Suppl)
Adv Crop Sci Tech
ISSN: 2329-8863 ACST, an open access journal
Page 81
Notes:
Plant Genomics 2016
July 14-15, 2016
conferenceseries
.com
July 14-15, 2016 Brisbane, Australia
4
th
International Conference on
Plant Genomics
An insight into the molecular mechanism of glutathione-ethylene interplay in plant defense
Riddhi Datta
and
Sharmila Chattopadhyay
Dr. A P J Abdul Kalam Govt. College, Newtown, India
P
lant defense is regulated by a network of signaling pathways where salicylate, jasmonate and ethylene (ET) function as key
signaling molecules. Glutathione (GSH) is gradually gaining importance as a dynamic player in this network playing critical roles
during stress. We have earlier reported that enhanced GSH level can provide resistance against
Botrytis cinerea
infection presumably
through its crosstalk with ET. In this study, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and
post-trancriptional regulations of its key enzymes, ACC synthase (ACS) and ACC oxidase (ACO). Transgenic
Arabidopsis
plants with
enhanced GSH content exhibited remarkable up-regulation of ACS2, ACS6 and ACO1 at transcript as well as protein levels while they
were down-regulated in the GSH depleted
pad2-1
mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a
WRKY33 dependent manner while ACO1 transcription remained unaffected. On the other hand, the mRNA stability for ACO1 was
found to be increased by GSH which explains our above observations. In addition, we also identified the ACO1 protein to be a subject
for S-glutathionylation which is consistent. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the
transgenic plants exhibited resistance to necrotrophic infection and salt stress while the
pad2-1
mutant was sensitive. Exogenous GSH
improved stress tolerance in wild-type plants but not in the ET signaling mutant,
ein2-1
, indicating that GSH mediated resistance to
these stresses occurs via an ET mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by
GSH during stress.
Biography
Riddhi Datta is a Gold-medallist in Botany in Under-graduate as well as Post-graduate courses from University of Calcutta, India. She has been working in the field
of Glutathione and its role in plant defense since 2011 and has recently submitted her PhD thesis from CSIR-Indian Institute of Chemical Biology, India. She has
published 14 papers in reputed international journals. At present, she is an Assistant Professor in Botany, Govt. General Degree College, New Town, India and a
Visiting faculty in the Post-graduate Department of Botany, Barasat Govt. College, India.
riddhi.bot@gmail.comRiddhi Datta et al., Adv Crop Sci Tech 2016, 4:3 (Suppl)
http://dx.doi.org/10.4172/2329-8863.C1.002