Previous Page  3 / 34 Next Page
Information
Show Menu
Previous Page 3 / 34 Next Page
Page Background

Page 31

conferenceseries

.com

Volume 6, Issue 2 (Suppl)

J Aeronaut Aerospace Eng

ISSN: 2168-9792 JAAE, an open access journal

Satellite 2017

May 11-13, 2017

May 11-13, 2017 Barcelona, Spain

3

rd

International Conference and Exhibition on

Satellite & Space Missions

Lunar IceCube: Pioneering technologies for interplanetary small satellite exploration

Benjamin K Malphrus

Morehead State University, USA

L

unar IceCube, a 6U CubeSat designed to prospect for water in solid, liquid and vapor forms and other volatiles from a low-perigee,

highly inclined lunar orbit, has been selected by NASA to fly on Exploration Mission-1 (EM-1). The mission is a partnership

between Morehead State University, NASA Goddard Spaceflight Center, JPL, the Busek Company, and Vermont Tech. Lunar IceCube

will be deployed during lunar trajectory by the Space Launch System (SLS) and use an innovative RF ion engine to achieve lunar

capture and the science orbit (inertially locked, highly elliptical, 100 km periapsis) to investigate the distribution of water as a function

of time of day, latitude and regolith composition in the context of lunar mineralogy. IceCube will include the Broadband InfraRed

Compact High Resolution Exploration Spectrometer (BIRCHES), developed by GSFC- a compact version of the successful New

Horizons instrument designed with the high spectral resolution (5 nm) and wavelength range (1 to 4 μm) needed to distinguish forms

of water, including ice. The mission will complement the scientific work of other missions by focusing on the abundance, location

and transportation physics of water ice on the lunar surface at a variety of latitudes. Lunar IceCube, while primarily a science mission,

will demonstrate technologies that will enable future interplanetary exploration with small satellite platforms including radiation-

hardened subsystems, a precise ranging transponder/transceiver, a capable attitude determination and control system, a high power

solar array and an innovative electric propulsion system (EP). The EP (Busek BIT-3 Iodine engine) generates 1.2 km-1 of delta-v

and, combined with an innovative low energy manifold trajectory, allows the spacecraft to reach lunar orbit from Earth escape with

minimal energy. The 13 secondary payloads to be deployed on EM-1, including Lunar IceCube, will usher in a new era of solar system

exploration with small satellite platforms.

Figure 1:

The Lunar IceCube mission is designed to prospect for water ice and other lunar volatiles from lunar orbit. Morehead

State University is leading the mission in partnership with NASA Goddard Spaceflight Center, JPL, Busek and Vermont Tech. It was

selected under NASA’s Next STEP program and will fly on Exploration Mission-1 in 2018.

Biography

Benjamin K Malphrus is a Professor of Space Science at Morehead State University. He has served as Scientific Staff of the National Radio Astronomy Observatory,

NASA’s Wallops Flight Facility, the University of South Carolina and West Virginia University. He served as Principle Investigator (PI) on nanosatellite missions

including KySat-2, the Cosmic X-ray Background Nanosatellite (CXBN), and CXBN-2, and had various roles on other small satellite missions. He is currently PI

of the Lunar IceCube Mission- a $15 M NASA project designed to investigate the transport physics of water ice on the Moon. He has published papers on topics

ranging from “Extragalactic astrophysics to instrumentation in radio astronomy, to nanosatellite systems development” and was awarded over $18 million R&D

grants funding. In the late 1990s, he developed a theory of galaxy formation that has gained wide acceptance among the astronomical community.

b.malphrus@moreadstate.edu

Benjamin K Malphrus, J Aeronaut Aerospace Eng 2017, 6:2(Suppl)

http://dx.doi.org/10.4172/2168-9792-C1-016