Page 35
conferenceseries
.com
Volume 9
Journal of Biotechnology & Biomaterials
ISSN: 2155-952X
Biomaterials 2019
February 25-26, 2019
February 25-26, 2019 | London, UK
4
th
Annual Conference and Expo on
Biomaterials
Biodegradable microparticles with hierarchical topographical features influence mesenchymal stem
cell behaviour
Chara Simitzi
and
Richard Day
UCL, UK
Statement of the Problem:
Mesenchymal stem cells (MSCs) are becoming increasingly important due to the broad spectrum
of trophic and immunomodulatory factors they secrete. The MSC secretome plays a role in angiogenesis and revascularization,
immune modulation and tissue repair; however, there is a lack of methods suitable for controlling this effect. Evidence exists to
show cell substrates influence MSC behaviour. Therefore, manipulating the cell substrate could provide improved methods for
controlling the secretome for new therapies but there is currently a lack of cell substrates suitable for implantation.
Methodology & Theoretical Orientation:
The effect of implantable substrates consisting of biodegradable microparticles
with hierarchical topographical features was investigated on MSC behaviour and secretome. Poly(DL-lactide-co-glycolide)
microparticles were fabricated via the thermally-induced phase separation technique (TIPS). Three different polymer
compositions of lactide/glycolide were studied. Microparticles were characterized in terms of surface topography and porosity.
Human adipose-derived MSCs (ADMSCs) were attached to the surface of the microparticles and cultured for 16 days in
xeno-free medium. Cell growth on the microparticles was evaluated at different time-points and compared with cells cultured
on tissue culture plastic. The angiogenic activity of the ADMSC secretome was evaluated by ELISA and
in vitro
angiogenesis
assays.
Findings:
Three different types of TIPS microparticles with different morphological and physicochemical characteristics were
investigated. ADMSCs adhered and proliferated on all types of the microparticles. Vascular endothelial growth factor (VEGF)
secretion was increased from cells cultured on the microparticles compared with cells cultured on tissue culture plastic. MSCs
attached to microparticles remained viable after 16 days, were capable of migrating from the microparticles, and retained their
lineage plasticity.
Conclusion & Significance:
Our results show that attaching MSCs to biodegradable TIPS microparticles can influence their
growth and secretion of pro-angiogenic growth factor. This finding may provide a new method for regenerative medicine.
Recent Publications
1. Vizoso F et al. (2017) Mesenchymal stem cell secretome: towards cell-free therapeutic strategies in regenerative medicine.
Int. J. Mol. Sci. 18(9):1852.
2. Tran C and Damaser M S (2015) Stem cells as drug delivery methods: application of stem cell secretome for regeneration.
Adv. Drug Deliv. Rev. 82-83:1-11.
3. Anderson H J et al. (2016) Mesenchymal stem cell fate: applying biomaterials for control of stem cell behavior. Front.
Bioeng. Biotechnol. 4:38.
4. Blaker J, Knowles J and Day R M (2008) Novel fabrication techniques to produce microspheres by thermally induced
phase separation for tissue engineering and drug delivery. Acta Biomaterialia 4(2):264-272.
5. Parmar N, Ahmadi R and Day R M (2015) A novel method for differentiation of human mesenchymal stem cells into
smooth muscle-like cells on clinically deliverable thermally induced phase separation microspheres. Tissue Eng. Part C
Methods 21(4):404-412.
Chara Simitzi et al., J Biotechnol Biomater 2019, Volume 9
DOI: 10.4172/2155-952X-C1-112