Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 3330

Journal of Biotechnology & Biomaterials received 3330 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Towards personalized precision medicine: New generation graphene protein microfluidic sensors

Biotechnology World Convention

Venkatesan Renugopalakrishnan

Boston Children�s Hospital, USA Harvard Medical School, USA Northeastern University, USA

Keynote: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.057

Abstract
Serum glucose, cholesterol, triglyceride and HbA1C monitoring are all valuable tools in the health management of the aging population especially given the increase in diabetes and cardiovascular diseases. Even for glucose monitoring, the challenges in obtaining sufficiently accurate and reliable measurements are so significant. None of them meet the even more stringent requirement of ISO 2012 and FDA. Because inaccurate systems bear the risk of false therapeutic decisions, rising health care costs, there is an urgent compelling need for significantly enhanced BG monitoring systems for PC applications. POC tests for other biomedically important analytes are generally even less accurate. The overall goal of the research in our laboratory and laboratories of our collaborators at Stanford, UC Berkeley, MIT and Rice is to develop new sensor platforms that will provide increased sensitivity and accuracy in point of care situations. Graphene-based platforms decorated by a probe protein enhance the sensitivity of pristine single layer grapheme multi-fold and offers a very accurate determination of critical analytes in the blood and other body fluids including saliva. The proposed system uses advanced graphene, Boron-doped graphene and carbon-nanotube-based sensors to transduce enzymatic binding into electrical signals that can be read and processed by a stand-alone system or even a cell-phone. These new biosensor chips will be housed in a plastic microfluidic system for sample acquisition, preparation and distribution to four separate biosensing chips. This approach will improve accuracy because it reduces operator errors, calibration problems and strip-to-strip variability, while increasing sensor sensitivity/specificity with the option to use redundant sensors for improved statistical confidence.
Biography

Venkatesan Renugopalakrishnan has obtained his PhD in Biophysics from the State University of New York at Buffalo. His graduate studies span both Columbia and State University of New York. He is a Professor at Northeastern University and Boston Children’s Hospital, Harvard Medical School where he teaches at the HMS. He is the author of more than 250 papers, Editor of three monographs and is a Member of scientific academies.

Email: v.renugopalakrishnan@neu.edu

Top