Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.
P53 is a tumour suppressor protein thought to be primarily involved in cancer biology, but recent evidence suggests it
may coordinate novel functions in the CNS, including mediation of pathways underlying neurodegenerative disease. In
microglia, the resident immune cells of the brain, p53 activity promote an activation-induced pro-inflammatory microglial
phenotype as seen in many neurodegenerative diseases as well as neurodegeneration (Davenport et al. 2010; Jayadev et al. 2011).
The mechanisms of microglial mediated neurotoxicity in neurodegenerative diseases such as Alzheimer�s disease remain elusive
although increasing evidence implicates inappropriate activity of p53-driven pathways (Jebelli et al., 2012; Jebelli et al., 2014).
Evidence suggests that degeneration of synapses is one of the earliest pathological events in many chronic neurodegenerative
diseases including Alzheimer�s disease (Conforti et al., 2007; Clare et al, 2010). Here we discuss how activation of microglia
modulates expression of p53, and the ramifications of this modulation for neuronal synaptic integrity. Analyses of neuronal
synaptic markers indicate that p53-driven activation pathways in microglia have a direct effect on the integrity of synaptic
marker protein expression and synaptic function (exocytosis) prior to neuronal loss by apoptotic death cascades, suggesting
the targeting of these pathways in microglia has ramifications for early therapeutic intervention in neurodegeneration. These
findings suggest that transcriptional-dependent p53 activities in microglia may drive a non-cell autonomous process of synaptic
degeneration in neurons during neuroinflammatory degenerative diseases. Our findings will be discussed in concert with our
new data from human iPSC derived microglia.
Biography
Dr Jennifer Pocock completed her Ph.D from the University of Birmingham, UK and postdoctoral studies from University of California and University of Dundee. She
is now head of the Cell Signalling Laboratory at the Institute of Neurology, University College London where the focus of her research is to investigate microglial
responses and their implications in neurodegeneration.
Relevant Topics
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals