ISSN: 2161-069X

Journal of Gastrointestinal & Digestive System
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

MiR-302c inhibits tumor growth of hepatocellular carcinoma by suppressing the endothelialmesenchymal transition of endothelial cells

3rd International Conference on Gastroenterology & Urology

Kai Zhu

Accepted Abstracts: J Gastroint Dig Syst

DOI: 10.4172/2161-069X.S1.023

Abstract
Endothelial cells are critical for angiogenesis, and microRNAs play important roles in this process. The regulatory role of microRNAs in endothelial cells of hepatocellular carcinoma (HCC) by examining the microRNA expression profile of human umbilical vein endothelial cells (HUVECs) in the absence or presence of human HCC cells were examined, and identified miR-302c as the most highly down-regulated microRNA. Furthermore, we revealed that miR-302c regulates the process of endothelial-mesenchymal transition (EndMT) in ECs. When miR-302c was overexpressed in HUVECs, the motility of the HUVECs was weakened; the expression levels of EndMT markers were also changed: vascular endothelial (VE)-cadherin was up-regulated, whereas β-catenin, FSP1, and α-SMA were down-regulated. Further in vivo and in vitro experiments showed that the growth of HCC was inhibited when co-cultured or co-injected with HUVECs overexpressing miR-302c. On the contrary, when miR-302c was suppressed in HUVECs, the opposite results were observed. Reporter assays showed that miR- 302c inhibited metadherin (MTDH) expression through directly binding to its 3?UTR. In addition, compared to ECs isolated from normal liver tissues of HCC patients, ECs isolated from tumor tissues expressed markedly low levels of miR-302c but high levels of MTDH. These results suggest that EC-specific miR-302c suppresses tumor growth in HCC through MTDH-mediated inhibition of EndMT. MTDH and miR-302c might provide a new strategy for anti-angiogenic therapy in HCC.
Biography
Top