ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Electrochemical DNA biosensors and their potential applications to nanobiotechnology

6th International Conference and Exhibition on Analytical & Bioanalytical Techniques

Seda Nur Topkaya

Ege University School of Pharmacy, Turkey

ScientificTracks Abstracts-Workshop: J Anal Bioanal Tech

DOI: 10.4172/2155-9872.S1.021

Abstract
Electrochemical based biosensors have been recently recognized as potential candidates for the requirements of nanotechnology applications. Sensitive and rapid detection of very few amounts of target nucleic acids (DNA or RNA) in biological matrices has attracted considerable attention from many fields, such as clinical diagnosis, drug researches and environmental analysis. Electrochemical DNA biosensors offer a highly sensitive and promising method for the detection of hybridization, genetic polymorphisms and mutations, alterations of genes and potential drug-DNA interactions because of their short assay time, miniaturization, portability, and low-cost. The main principle of electrochemical DNA biosensors is based on the conversion of hybridization events into the analytical signals via a transducer. The most common way is the direct detection of DNA oxidation signals of guanine bases through voltammetric techniques by evaluating the intrinsic signal changes of bases. Specific DNA/RNA hybridization can also be monitored using selective redox indicators, amperometric techniques, nanomaterials or electrochemical impedance measurements indirectly. Electrochemical based detection methods meet the sensitivity requirements with its picomolar detection limit in real samples and selective for the target DNA/RNA.
Biography

Seda Nur Topkaya has completed his PhD in 2013 at Analytical Chemistry from Faculty of Pharmacy, Ege University, Turkey. She also conducted her PhD researches at Harvard and MIT for 1 year about tissue engineering. Her main research interests are electrochemistry, electrochemical based DNA biosensors, detection of drug-DNA applications and also 2D-3D tissue engineering. She has published more than 10 papers in reputed journals and serving as a reviewer of many international journals.

Email: sedanur6@gmail.com

Top