Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 3330

Journal of Biotechnology & Biomaterials received 3330 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Dynamics of nanotechnology tools to combat plant pathogens

8th Euro Biotechnology Congress

Sandeep Pandey

Awadhesh Pratap Singh University, India

Posters-Accepted Abstracts: Biotechnol Biomater

DOI: 10.4172/2155-952X.S1.038

Abstract
Nanotechnology has emerged with varied scopes in the field of plant pathology. In recent years, the science of plant pathology has witnessed major breakthroughs in plant defense and disease combating programs. The nanotubes, an important tool of nanotechnology which is a cylindrically shaped carbon molecules having a diameter of about one nanometer can be exploited to deliver proteins, nucleic acids and drugsto cells. This technique also helps to recognize and fight pathogens in agriculture crops. Although carbon nanotubes had toxic effects, because they induce programmed cell death in plant cells but do not show any adverse impact at the tissue level indicating that injecting cells with carbon nanotubes caused only limited injury. Thus, to design a Disease Combating Nanotechnology Model (DCNM) requires assessment of bioavailability and toxicity of carbon nanotubes and their impurities on the crops. The crops should also be tested for their cell viability, genetic material, gene expression, seed germination, seed growth and various other physiological, biochemical and genetic characteristics before applying the nanotechnology principles. The doses of nanotubes can act as a limiting factor in these programs. The use of magnetic nanoparticles through magnetic field gradients has been proved significant in selected plant tissues. The magnet helps these nanoparticles that are charged with different substances to get introduced within the plants and if necessary concentrated into localized areas modifying pathogenesis mechanism. The safer use of nanotechnology techniques to combat agriculture crop pathogens and evaluation of new tools for a successful plant disease management programs are reviewed.
Biography

Email: sandeep27pandey@rediffmail.com

Top