Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page

Creation of keratin resin and fibroin resin using fibrous animal waste products

3rd International Conference and Exhibition on Biopolymers & Bioplastics

Shinji Hirai

Muroran Institute of Technology, Japan

ScientificTracks Abstracts: J Bioremed Biodeg

DOI: 10.4172/2155-6199.C1.002

Abstract
Keratin resin and fibroin resin have been prepared from silk or hornet silk powder, composed of fibroin protein, and from wool or chicken feather powder, composed of keratin protein, respectively, by heating at 100â��180�°C under pressures of 20â�� 40 MPa. The mechanically ground powders of wool waste or chicken feathers and pulverized waste silk, all of which are waste materials, can be used as the raw materials. In the case of wool, woven wool fabric also serves as a raw material after removal of the cuticle layers. For resinification, the powder was simply placed in a jig; in the case of woven fabric, it was stacked into the jig after punching to the size of the jig and was then heated under pressure using a hot press. The resins derived from silk or wool powder showed glass transition temperatures close to 200�°C and three-point bending strengths and flexural moduli superior to those of polycarbonate resins. On the other hand, the resin derived from wool powder had a very small expansion coefficient, with a value comparable to metals such as copper or aluminum. Moreover, the three-point bending strength of the resin derived from woven wool fabric increased to 116 MPa. Furthermore, upon applying stress to the resin, reversibility to woven fabric was observed, resulting in excellent impact resistance that is superior to that of ABS resin. Compared to the resins derived from wool and silk powders, the resin derived from chicken feather powder had a lower glass transition temperature and a larger thermal expansion coefficient, whereas the three-point bending strength, the elastic modulus, and the Vickers hardness were found to be lower. However, with the sole exception of the inferior three-point bending strength, the other features of this resin were comparable with those of polycarbonate.
Biography

Shinji Hirai obtained his PhD in Engineering from Waseda University, Japan in 1988. In 1990, he joined the Department of Materials Science and Engineering, Muroran Institute of Technology as an Associate Professor. In 1992–1993, he trained under Professor Emeritus L Brewer at the UC Berkeley. In 2003, he acquired the position of Full Professor and his research interests expanded to include high-performance biomass plastics created using animal fiber waste and effective utilization of rare earth sulfides. Since 2012, he is concurrently serving as the Director of Research Center for Environmentally Friendly Materials Engineering. Recently, as part of the ImPACT national project, he is involved in the study of resinification of artificial spider silk.

Email: hirai@mmm.muroran-it.ac.jp

Top