Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 2154

Journal of Biotechnology & Biomaterials received 2154 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page

Biocompatibility of new fiber-reinforced composite materials for craniofacial bone reconstruction

Annual Conference and Expo on Biomaterials

Horatiu Rotaru, Madalina-Anca Lazar, Ioana Baldea, Adina Bianca Bosca, Cristina Prejmerean and Radu Septimiu Campian

Iuliu Hatieganu University of Medicine and Pharmacy, Romania Babes Bolyai University, Romania

ScientificTracks Abstracts: J Biotechnol Biomater

DOI: 10.4172/2155-952X.C1.049

Abstract
This study aims to assess the biocompatibility of new advanced fiber-reinforced composites (FRC) to be used for custommade cranial implants. Four new formulations of FRC were obtained using polymeric matrices (combinations of monomers bisphenol A glycidylmethacrylate (bis-GMA), urethane dimethacrylate (UDMA), triethylene glycol dimethacrylate (TEGDMA), hydroxyethyl methacrylate (HEMA)) and E-glass fibers (300 g/mp). Every FRC contains 65% E-glass and 35% polymeric matrix. Composition of polymeric matrices are: bis-GMA (21%), TEGDMA (14%) for FRC1; bis-GMA (21%), HEMA (14%) for FRC2; bis-GMA (3.5%), UDMA (21%), TEGDMA (10.5%) for FRC3 and bis-GMA (3.5%), UDMA (21%), HEMA (10.5%) for FRC4. Cytotoxicity test was performed on both human dental pulp stem cells and dermal fibroblasts. Viability was assessed by tetrazolium dye colorimetric assay. Subcutaneous implantation test was carried out on forty male Wistar rats, randomly divided into 4 groups, according to the FRC tested. Each group received subcutaneous dorsal implants. After 30 days, intensity of the inflammatory reaction, tissue repair status and presence of the capsule were the main criteria assessed. Both cell populations showed no signs of cytotoxicity following the FRC exposures. Among the FRC formulations, the best results were obtained with FRC3, followed by FRC2. FRC3 showed the mildest inflammatory reaction and this correlated both with the non-cytotoxic behavior and the presence of a well-organized fibrous capsule (Z=-3.16, p=0.002). The composite biomaterials developed may constitute an optimized alternative of the similar materials used for the reconstruction of craniofacial bone defects. According to our studies, we conclude that FRC3 is the best formulation regarding the biological behavior.
Biography

Horatiu Rotaru is a young and proficient Maxillofacial Surgeon. He is the Head of the Department of Oral and Maxillofacial Surgery in Cluj-Napoca, Romania. He is qualified as an experienced Researcher in the area of biomaterials, medical imaging and 3D engineered reconstructions. He has particular interest in reconstructive surgery, advanced biomaterials, medical imaging and tissue engineering. He has published more than 45 articles and he is also co-author in 6 books of craniomaxillofacial surgery.

Email: hrotaru@yahoo.com

Top