Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page

Bio-based thermosets from star-like highly functional reactive resins

3rd International Conference and Exhibition on Biopolymers & Bioplastics

Dean C Webster

North Dakota State University, USA

Keynote: J Bioremed Biodeg

DOI: 10.4172/2155-6199.C1.001

Abstract
A challenge faced with transitioning from polymer materials derived from petrochemical sources to bio-based sources is in designing materials having the performance properties required for todayâ��s applications. High performance thermoset polymers are used in applications such as coatings, composites, and adhesives and are made in-situ from the reactions of functional low molecular weight resins or functional oligomers. While vegetable oils are a readily available and amenable to functionalization to be used in thermosets, their long aliphatic hydrocarbon chains tend to result in materials that are soft and flexible. However, we have found that by creating multifunctional resins from vegetable oil fatty acids and a highly functional polyol, thermosets can be formed that have the strength and stiffness for use in high performance coatings and composites. For example, epoxidized sucrose esters crosslinked with cyclic anhydrides yield thermosets having modulus values exceeding 1 GPa. Polyurethanes made using highly functional soy polyols have glass transition temperatures exceeding 100�°C, much higher than typical soy-based polyols. Methacrylated sucrose esters can be used to form high performance composites using either glass or natural fibers. It has also been discovered that 100% bio-based thermosets can be made from the water-catalyzed crosslinking of epoxidized sucrose soyate with naturally-occurring acids.
Biography

Dean C Webster is Professor and Chair in the Department of Coatings and Polymeric Materials at North Dakota State University (NDSU). He received a BS in Chemistry and a PhD in Materials Engineering Science both from Virginia Tech. Prior to joining NDSU in 2001, he worked for Sherwin-Williams and at Eastman Chemical Company. He is the recipient of the 2011 Roy W Tess Award in Coatings Science given by the American Chemical Society, the 2013 Joesph Mattiello Lecture award given by the American Coatings Association, and the Waldron Research Award given by the NDSU Alumni Association. His research is in the area of new high performance polymer systems for coatings and composites, nanocomposites, polymers for marine antifouling coatings, and use of renewable resources in polymers and coatings systems.

Email: dean.webster@ndsu.edu

Top