Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page

Bio-based and biodegradable compostable plastics: Logic, definitions and testing methods

3rd International Conference and Exhibition on Biopolymers & Bioplastics

Ramani Narayan

Michigan State University, USA

ScientificTracks Abstracts: J Bioremed Biodeg

DOI: 10.4172/2155-6199.C1.002

Abstract
Replacing petro/fossil carbon with bio-based carbon by using plant biomass feedstock in place of fossil feedstock for the manufacture of plastic materials offers a strong 'value proposition' for a zero material carbon footprint. It may also reduce the process carbon and environmental footprint. A methodology for quantification of 'bio-based carbon content' has been developed and codified into the ASTM Standard D6866. Using bio-based carbon content calculations, one can calculate the intrinsic CO2 reductions achieved by incorporating bio-based carbon content into a plastic product - the material carbon footprint. It is important to report on the process carbon footprint (process footprint arising from the conversion of feedstock to product) using lifecycle assessment methodology to ensure that the intrinsic material carbon footprint value proposition is not negated during the conversion, use, and disposal lifecycle phases of the product. Biodegradability is an end-of-life option for single-use disposable plastics and needs to be tied to a disposal environment such as composting (compostable plastic) or soil or anaerobic digestion. More importantly, if a biodegradable plastic is not completely and rapidly removed (within not more than 1-2 years) from the target disposal environment, the degraded fragments become toxin carriers, resulting in serious environmental and health risks. ASTM, European, and ISO standards define and specify the requirements for complete biodegradability in composting, soil, and marine environments and must be strictly adhered to so that serious environmental and health consequences can be avoided.
Biography

Ramani Narayan is University Distinguished Professor, the highest honor that can be bestowed on a faculty member at Michigan State University. He is Fellow of the US National Academy of Inventors; Fellow of ASTM & received ASTM award of merit, the highest award given by the society to an individual member. He is Scientific Chair of the Biodegradable Products Institute (BPI) USA; and Convener/Technical Expert on several ISO Standards committees. He has 200 refereed publications, 30 issued patents and supervised 20 PhD and 25 Master’s students. He is a successful Entrepreneur, having commercialized several bioplastics technologies.

Email: narayan@msu.edu

Top