# **Supplementary Information**

Self-assembly stability compromises the efficacy of tryptophan-containing designed anti-measles virus peptides Diogo A. Mendonça<sup>1</sup>, Tiago N. Figueira<sup>1</sup>, Manuel N. Melo<sup>2</sup>, Olivia Harder<sup>3</sup>, Stefan Niewiesk<sup>3</sup>, Anne Moscona<sup>4,5,6,7</sup>, Matteo Porotto<sup>4,5,8\*</sup>, Miguel A.R.B. Castanho<sup>1\*</sup>, Ana Salomé Veiga<sup>1\*</sup>

<sup>1</sup>Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal

<sup>2</sup>Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2775-412 Oeiras, Portugal

<sup>3</sup>Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, United States of America

<sup>4</sup>Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, United States of America

<sup>5</sup>Center for Host-Pathogen Interaction, Columbia University Medical Center, New York, New York 10032, United States of America

<sup>6</sup>Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, United States of America

<sup>7</sup>Department of Physiology & Cellular Biophysics, Columbia University Medical Center, New York, New York 10032, United States of America

<sup>8</sup>Department of Experimental Medicine, University of Study of Campania 'Luigi Vanvitelli', 81100 Caserta, Italy

#### HRC-L454W peptides secondary structure

HRC-L454W peptides secondary structure was studied using circular dichroism (CD). Peptide samples were prepared in 2% TFE (v/v) in 10 mM phosphate, 150 mM NaF, pH 7.4 buffer. CD spectra of the peptides at 10  $\mu$ M were acquired at 25°C, between 190 and 260 nm. Each final spectrum corresponds to the averaged accumulation of 10 scans. Spectra were plotted using mean molar residue ellipticity ([ $\theta$ ]) values [1]:

$$[\theta] = \frac{\theta}{aa \times l \times c} \qquad (S1)$$

in which  $\theta$  is the ellipticity, *aa* the number of amino acid residues of the peptide sequence, *I* is the cuvette path length, and *c* is the molar concentration. [ $\theta$ ] values were corrected for the buffer background noise. Two independent replicates were performed for each sample.

The helix content ( $X_H$ ) of each peptide was calculated using the equation:

$$X_H = \frac{[\theta]_{222}}{[X_H^{\infty}(1-\frac{k}{n})] \times 100}$$
 (S2)

in which  $[\theta]_{222}$  is the mean residue molar ellipticity at 222 nm,  $X_H^{\infty}$  is the reference value for a helix of infinite length, *n* the number of residues per helix, and *k* a wavelength-dependent constant.  $X_H^{\infty}$  and *k* values, -39.5 deg.cm<sup>2</sup>.dmol<sup>-1</sup> and 2.57, respectively, were obtained from computed CD and optical rotatory dispersion (ORD) of a helix of infinite length [2].

Also, the ratio  $[\theta]_{222/}[\theta]_{208}$  was obtained. Parallel  $n\pi^*$  and  $\pi\pi^*$   $\alpha$ -helix backbone excitation bands occur at the 222 and 208 nm, respectively, being the  $[\theta]_{222}/[\theta]_{208}$  ratio used to evaluate the  $\alpha$ -helices flexibility [3, 4].

CD analysis was used to determine the peptides' secondary structure and evaluate the solvent-exposition and looseness of the peptide chains within the nanoparticles (Figure S1 and Table S1). HRC4, -7 and -8-L454W displayed the lowest helical content. Additionally, these peptides revealed higher  $[\theta]_{222}/[\theta]_{208}$  values when compared to those observed for the respective mono-conjugated monomeric HRC2 and -5-L454W peptides. These data suggest a reduced hydrophobic shielding of the peptide chains within the HRC4, -7 and -8-L454W nanoparticles, leading to a loss on their helical properties.

#### Bibliography

- 1. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta Proteins Proteomics 1751:119–139
- Chen YH, Yang JT, Chau KH (1974) Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359
- 3. Greenfield N, Fasman GD (1969) Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation. Biochemistry 8:4108–4116
- Cooper TM, Woody RW (1990) The effect of conformation on the CD of interacting helices: A theoretical study of tropomyosin. Biopolymers 30:657–676

# Figures

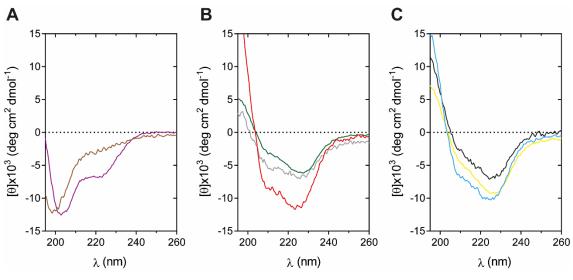



Figure S1

### Figures Legend:

Figure S1 - Representative CD spectra of each non-conjugated (A), Cholconjugated (B) and Toc-conjugated (C) HRC-L454W peptide samples (HRC1-L454W, brown; HRC2-L454W, red; HRC3-L454W, purple; HRC4-L454W, green; HRC5-L454W, blue; HRC6-L454W, yellow; HRC7-L454W, grey; HRC8-L454W, black).

### Tables

Table S1 – HRC-L454W  $\alpha$ -helix parameters.  $\alpha$ -helical content was calculated through the equation S2.

|            | Х <sub>н</sub> (%) | [ <b>θ</b> ] <sub>222</sub> /[ <b>θ</b> ] <sub>208</sub> |
|------------|--------------------|----------------------------------------------------------|
| HRC2-L454W | 26,62 ± 5,16       | 1,549 ± 0,054                                            |
| HRC4-L454W | 12,40 ± 3,45       | 1,835 ± 0,517                                            |
| HRC5-L454W | 29,964 ± 4,562     | 1,674 ± 0,090                                            |
| HRC6-L454W | 22,3 ± 0,06        | 2,276 ± 0,214                                            |
| HRC7-L454W | 16,706 ± 0,806     | 1,702 ± 0,188                                            |
| HRC8-L454W | 16,36 ± 1,32       | 2,550 ± 0,325                                            |