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Introduction
Fractional Calculus has been used to model physical and 

engineering processes, which are found to be best described by 
fractional differential equations. It is worth nothing that the standard 
mathematical models of integer-order derivatives, including nonlinear 
models, do not work adequately in many cases. In the recent years, 
fractional calculus has played a very important role in various fields 
such as mechanics, electricity, chemistry, biology, economics, notably 
control theory signal, image processing and groundwater problems. In 
the past several decades, the investigation of travelling-wave solutions 
for nonlinear equations has played an important role in the study of 
nonlinear physical phenomena .An excellent literature of this can be 
found in fractional differentiation and integration operators were also 
used for extensions of the diffusion and wave equations [1-11]. 

The solutions of Fractional heat-like and wave-like equations 
with variable coefficients have attracted attention of many authors 
in mathematics community. Recently, Shou and He [12] used the 
variational iteration method (VIM) to solve various kinds of heat-like 
and wave-like equations. However with VIM one needs first to obtain, 
the Lagrange multiplier and the correctional function. In addition of 
this, sometime, the solutions obtained via the VIM are noisy [13,14] 
one therefore needs to cancel the noisy term to obtain the correct 
solution. 

Xu and Cang [15] solved the fractional heat-like and wave-like 
equations with variable coefficients using Homotopy Analysis Method 
(HAM). The disadvantage of HAM is that, it is very much depended 
on choosing auxiliary parameter. Momani [13] applied the Adomian 
Decomposition method to the time fractional heat-like and wave-
like equations with variable coefficients. The main disadvantage of 
the Adomian method is that the solution procedure for calculation 
of Adomian polynomials is complex and difficulty as pointed out by 
many researchers [16-20].

In this paper, we extend the application of the Homotopy 
Decomposition Method (HDM) in order to derive analytical 
approximate solutions to nonlinear time Fractional heat-like and 
wave-like equations with variable coefficients

The HDM was recently applied to solve: Fractional modified 
Kawahara equation, fractional model of HIV infection of CD4+T 
cells, attractor fractional one-dimensional Keller-Segel equations, 
fractional Jaulent-Miodek and Whitham-Broer-Kaup equations; 
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Abstract
A relatively new analytical method, the homotopy decomposition method (HDM) was applied to derive exact 

and approximate analytical solutions of nonlinear Fractional heat-like and wave-like equations. In all examples, in 
the limit of infinitely many terms yields the exact solution. A comparison with the exact solution reveals that HDM is 
simple, efficient and reliable. In addition, the calculations involved in HDM are very simple and straight forward. It is 
demonstrated that HDM is a powerful and efficient tool for Fractional heat-like and wave-like equations. It was also 
demonstrated that HDM is more efficient than the ADM (Adomian decomposition method), VIM (Variational Iteration 
method), HAM (Homotopy analysis method) and HPM (Homotopy decomposition method).
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Fractional Riccati Differential Equation, fractional nonlinear 
predator-prey population, fractional nonlinear system predator-prey 
population. The relatively new approached the HDM is a promising 
analytical technique to solve nonlinear fractional partial and ordinary 
differentials equations. The fractional partial differential equation 
under investigation here is given below as [21]:

( ) ( ) ( ), , *
( , , , ) , , , , , , , , ,x x y y zz

u x y z t f x y z u k x y z u h x y z u x y z I
t

α

α
+∂

= + + ∈ ⊂
∂

R
	

					                                     (1.1)
Subject to the initial conditions:

(x,y,z,0)=l(x,y,z), ∂t u(x,y,z,0)=d(x,y,z)                      	             (1.2)
The remaining of this paper is structured as follows: In section 2 

we present a brief history of the fractional derivative order and theirs 
properties. We present the basic ideal of the homotopy decomposition 
method for solving high order nonlinear fractional partial differential 
equations. We present the application of the HDM for fractional 
nonlinear differential equations (1.1) and (1.2) and numerical results 
in Section 4. The conclusions are then given in the final Section 5.

Fractional Derivative Order
Brief history

There exists a vast literature on different definitions of fractional 
derivatives. The most popular ones are the Riemann–Liouville and the 
Caputo derivatives. For Caputo we have                            

( )( ) ( ) 1
0

0

1 ( )
( )

x n
nC

x n

d f tD f x x t dt
n dt

αα

α
− −= −

Γ − ∫ 	              (2.1)       

For the case of Riemann-Liouville we have the following definition                                        
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Basic Idea of the HDM
To illustrate the basic idea of this method we consider a general 

nonlinear non-homogeneous fractional partial differential equation 
with initial conditions of the following form

( )( ) ( )( ) ( )( , ) , , , , 0U x t L U x t N U x t f x t
t

α

α α∂
= + + >

∂
              	              (3.1)                        

Subject to the initial condition
( ) ( ) ( ) ( )0 0,0 , 0, 1 , ,0 0k n

kD U x f x k n D U xα α− −= = …… − =  and 
[ ]n α=

( ) ( ) ( ) ( )0 0,0 , 0, 1 , ,0 0k n
kD U x g x k n D U x= = …… − =  and 

n=[α]

Where,  
t

α

α

∂
∂

 denotes the Caputo or Riemann-Liouville fraction 

derivative operator, f is a known function, N is the general nonlinear 
fractional differential operator and L represents a linear fractional 
differential operator. The method first step here is to transform the 
fractional partial differential equation to the fractional partial integral 

equation by applying the inverse operator 
t

α

α

∂
∂

 of on both sides of 

equation (3.1) to obtain: In the case of Riemann-Liouville fractional 
derivative                                                                                                                                                          

( ) ( ) ( )
1

1

0 0

1,
( 1) ( )

tn
j j

j

f x
U x t t t

j
αα τ

α α

−
−−

=

= + −
Γ − + Γ∑ ∫  

		       [ ]( ( , )) ( ( , )) ( , )L U x N U x f x dτ τ τ τ+ +        (3.2)
In the case of Caputo fractional derivative                                                                                                                            

( ) ( ) ( )
1

1

0 0
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( 1) ( )

tn
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g x
U x t t t

j
ατ

α α

−
−

=

= + −
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		                       [ ]( ( , )) ( ( , )) ( , )L U x N U x f x dτ τ τ τ+ +

Or in general by putting                                                         

( ) ( )
1

0

,
( 1)

n
j j

j

f x
t f x t

j
α

α

−
−

=

=
Γ − +∑    or ( ) ( )1

0

,
( 1)

n
j j

j

g x
f x t t

jα

−

=

=
Γ − +∑

We obtain:                                                                                                                            

( ) ( ) [ ]1

0

1, ( , ) ( ( , )) ( ( , )) ( , )
( )

t

U x t T x t t L U x N U x f x dατ τ τ τ τ
α

−= + − + +
Γ ∫  	

			      			                  (3.3)                    
In the homotopy decomposition method, the basic assumption is 

that the solutions can be written as a power series in p                                                                                                                                           

( )
0

( , , ) , ,n
n

n

U x t p p U x t
∞

=

= ∑  		                             (3.4 a)

( )
1

, lim ( , , )
p

U x t U x t p
→

= 			                              (3.4 b)                                                                                     
and the nonlinear term can be decomposed as	                                                                          

( )
0

, ( )n
n

n

NU x t p U
∞

=

= ∑ H 			                 (3.5)

Where (0,1)p  is an embedding parameter. ( )n UH  (U) is the He’s 
polynomials that can be generated by                                                                                                                                   

( )0
0

1, , ( , ) , 0,1, 2
!

n
j

n n jn
j

U U N p U x t n
n p

∞

=

  ∂
= =   ∂    

∑LLL LLLH       (3.6)

The homotopy decomposition method is obtained by the graceful 
coupling of homotopy technique with Abel integral and is given by                                                                                   

( ) ( ) 1

0 0

( , ) ,
( )

t
n

n
n

pp U x t T x t t ατ
α

∞
−

=

− = −
Γ∑ ∫

( )( ) ( ) 1

0

1 ( )
( )

xn
n

x n
dD f x x t f t dt

n dx
αα

α
− −= −

Γ − ∫ 	            (2.2)

Each fractional derivative presents some advantages and 
disadvantages [22,23]. The Riemann–Liouville derivative of a constant 
is not zero while Caputo’s derivative of a constant is zero but demands 
higher conditions of regularity for differentiability: to compute 
the fractional derivative of a function in the Caputo sense, we must 
first calculate its derivative. Caputo derivatives are defined only 
for differentiable functions while functions that have no first order 
derivative might have fractional derivatives of all orders less than one in 
the Riemann–Liouville sense [22]. Recently, Jumarie [21,22] proposed 
a simple alternative definition to the Riemann–Liouville derivative.                                                                                                                  

( )( ) ( ) ( ){ }1

0

1 (0)
( )

xn
n

x n
dD f x x t f t f dt

n dx
αα

α
− −= − −

Γ − ∫      (2.3)

His modified Riemann–Liouville derivative seems to have 
advantages of both the standard Riemann–Liouville and Caputo 
fractional derivatives: it is defined for arbitrary continuous (non-
differentiable) functions and the fractional derivative of a constant 
is equal to zero. However from it definition we do not actually give a 
fractional derivative of a function says f(x) but the fractional derivative 
of f(x)-f(0) and can sometime leads to fractional derivative that is not 
defined at the origin for some function [21].

Caputo and Riemann-Liouville may have their disadvantages, but 
they still remain the best definition of the fractional derivative. Every 
definition must be used accordingly [22].

Properties and definitions 
Definition 1: A real function f(x),x>0, is said to be in the space Cμ, 

µ∈ℝif there exists a real number p>µ, such that f(x)=xph(x), where 
h(x) ∈ C [0,∞]), and it is said to be in space mCµ  if  f(m) ∈ Cμ, m∈ℕ

Definition 2: The Riemann-Liouville fractional integral operator of 
order α ≥ 0, of a function f∈Cμ, μ ≥ -1, is defined as                                                                                                                                       

( ) ( ) ( )1

0

1 , 0, 0
( )

x

J f x x t f t dt xαα α
α

−= − > >
Γ ∫  		               (2.4)

J0 f(x)=f(x)			 
Properties of the operator can be found in [22] we mention only 

the following:
For f∈ Cμ,μ ≥ -1,α,β ≥ 0 and γ>-1:                		               (2.5)    

Jα Jβ f(x)=J(α+β) f(x), Jα Jβ f(x)=Jβ Jα f(x) and ( 1)
( 1)

J x xα γ α γγ
α γ

+Γ +
=

Γ + +

Lemma 1: If 1 , , 1, mm m m and f Cµα µ− < ≤ ∈ ∈ ≥ −N  then

( ) ( )D J f x f xα α =  and, ( ) ( ) ( ) ( )
1

0
0

0 , 0
!

km
k

k

xJ D f x f x f x
k

α α
−

+

=

= − >∑                 	
						                  (2.6)

Definition 3: Partial Derivatives of Fractional order
Assume now that f(x) is a function of n variables xi i=1,……, 

n also of class C on D ∈ ℝn. As an extension of definition 3 
we define partial derivative of order α for f respect to xi the 
function                                                                                                                                                                                

( ) ( ) ( )1

¯

1 |
i

i j

x
m m

i x j x t
x

a

a f x t f x dt
m

αα

α
− −

=∂ = − ∂
Γ − ∫      	              (2.7)

If it exists, where  
i

m
x∂   is the usual partial derivative of integer order 

m.
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                     ( )
0 0

, ( , ) ( , )n n
n n

n n

f x L p U x N p U x dτ τ τ τ
∞ ∞

= =

    
+ +    

    
∑ ∑  (3.7)

 Comparing the terms of same powers of p gives solutions of 
various orders with the first term:

( )0 , ( , )U x t T x t=                                                           	             (3.8)   
Complexity and convergence of the homotopy decomposition 

method
It is very important to test the computational complexity of a 

method or algorithm. Complexity of an algorithm is the study of how 
long a program will take to run, depending on the size of its input and 
long of loops made inside the code. We compute a numerical example 
which is solved by the homotopy decomposition method. The code has 
been presented with Mathematica 8 according to the following code.

Step 1: Set m ← 0
Step 2: Calculated the recursive relation after the comparison of the 

terms of the same power is done.
Step 3: If ( )1 , ( , )n nU x t U x t r+|| − ||<  with r the ratio of the 

neighbourhood of the exact solution [2] then go to step 4, else m←m+1 
and go to step 2.

Step 4: Print out:

( )
0

, ( , )n
n

U x t U x t
∞

=

= ∑
as the approximate of the exact solution.

Lemma 1: If the exact solution of the fractional partial differential 
equation (3.1) exists, then 

( )1 , ( , )n nU x t U x t r+|| ||− <  for all ( , )x t X T∈ ×

Proof: Let ( , )x t X T∈ × , then since the exact solution exists, then 
we have that following:

( ) ( )1 1, ( , ) , ( , ) ( , ) ( , )n n n nU x t U x t U x t U x t U x t U x t+ +|| − ||=|| − + − ||

( ) ( )1 , ( , ) , ( , )n nU x t U x t U x t U x t+≤|| − || + || − + ||

2 2
r r r≤ + =

The last inequality follows from [21].
Lemma 2: The complexity of the homotopy decomposition method 

is of order O(n)
Proof: The number of computations including product, addition, 

subtraction and division are
In step 2
U0: 0 because, obtains directly from the initial guess [23]
U1: 3

….
Un: 3
Now in step 4 the total number of computations is equal to 

0 ( , ) 3 ( )n
j jU x t n O n= = =Σ .

Theorem 1 [23]: Assuming that XxT ⊂R×R+ is a Banach space 
with a well defined norm || ||, over which the series sequence of 
the approximate solution of (1.1) is defined, and the operator 

( )( ) ( )1, ,n nG U x t U x t+=  defining the series solution of (1.4b) satisfies the 
Lipschitzian conditions that is ( ) ( ) ( )* *|| || || |( ) , , |k k k kG U G U U x t U x tε− ≤ −  for 
all ( , , )x t k X T∈ × ×N , then series solution obtained (1.5) is unique. 

Proof: Assume that U(x,t) and U*(x,t) is the series solution 
satisfying equation (1.1) then:

( ) ( )* n *
n

n 0

U x, t, p p U x, t
∞

=

= ∑  with initial guess T(x,t)

( ) ( )
0

, , ,n
n

n

U x t p p U x t
∞

=

= ∑  also with initial guess T(x,t) therefore

( ) ( )*|| ||, , 0, 0,1, 2,n nU x t U x t n− = = LLLL

 By the recurrence for *0, ( , ) ( , ) ( , ),n nn U x t U x t T x t= = =  assume that 
for n>k ≥ 0, ( ) ( )*

k kU x, t U x, t|| 0||− = . Then
( ) ( ) ( ) ( ) ( )* * *

k 1 k 1 k k k kU x, t U x, t G U G(|| || || || || ||U ) U x, t U x, t 0+ +− = − ≤ ε − =

This completes the proof.

Application 
In learning science examples are useful than rules’’ (Isaac Newton). 

In this section we apply this method for solving fractional differential 
equation in form of equation (1.1) together with (1.2). 

Example 1: Consider the following three-dimensional fractional 
heat-like equation 

( ) ( )4 4 4 2 2 21, , , ,0 , , 1,0 1
36t xx yy zzu x y z t x y z x u y u z u x y zα α∂ = + + + < < < ≤      	

						                    (4.1)
Subject to the initial condition:
u(x,y,z,0)=0                                                		                  (4.2)
Following carefully the steps involved in the HDM, we arrive at the 

following equations      

( )
0

, , ,n
n

n

p u x y z t
∞

=
∑

( ) ( )
( )

( ) ( )

2

01 4 4 4

2 20

0 0

, , ,
1
36

, , , , , ,

n
nt

n xx

n n
n n

n nyy zz

x p u x y z t
p t x y z d

y p u x y z t z p u x y z t

ατ τ
α

∞

=−

∞ ∞

= =

   
   

   = − +  Γ      + +          

∑
∫

∑ ∑  	

					                                        (4.3)
Now comparing the terms of the same power of p yields:

( )0
0: , , ,p u x y z t 					                   (4.4)

( ) ( ) ( ) 11 4 4 4
1

0

1: , , ,
t

p u x y z t t x y z dατ τ
α

−= −
Γ ∫

( ) ( ) ( ) 1

0

1: , , ,
t

n
np u x y z t t ατ

α
−= −

Γ ∫

            
( ) ( ) ( )( ) ( )2 2 2

1 1 1
1 , , , ,0 0, 2
36 n n n nxx yy zz

x u y u z u d u x y z nτ− − −
 + + = ≥ 
 

Thus the following components are obtained as results of the above 
integrals                    

u0 (x,y,z,t)=0

( ) ( )
4 4 4

1 , , ,
1

t x y zu x y z t
α

α
=

Γ +

( ) ( )
2 4 4 4

2 , , ,
2 1

t x y zu x y z t
α

α
=

Γ +

( ) ( )
3 4 4 4

3 , , ,
3 1

t x y zu x y z t
α

α
=

Γ +
	          …

( ) ( )
4 4 4

, , ,
1

n

n
t x y zu x y z t

n

α

α
=

Γ +
Therefore the approximate solution of equation for the first n is 

given below as:   

( )
4 4 4

1

( , , , )
1

nN

N
n

t x y zu x y z t
n

α

α=

=
Γ +∑   		   	               (4.6)

Now when N→∞ we obtained the follow solution                                                            

( ) ( ) ( )( )
4 4 4

4 4 4 4 4 4

0

, , , 1
1

n

n

t x y zu x y z t x y z x y z E t
n

α
α

αα

∞

=

= − = −
Γ +∑
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Where  Eα(tα) is the generalized Mittag-Leffler function. Note that 
in the case α=1

( ) ( )4 4 4, , , exp( ) 1u x y z t x y z t= − 			                 (4.7) 
This is the exact solution for this case.
Example 2: we consider the three-dimensional fractional wave-like 

equation:                
( ) ( )2 2 2 2 2 21, , , ,0 , , 1,1 2

2t xx yy zzu x y z t x y z x u y u z u x y zα α∂ = + + + + + < < < ≤      
Subject to the initial condition:

( ) ( ) 2 2 2, , ,0 0, , , ,0tu x y z u x y z x y z= = + −                                                 (4.8)
Following carefully the steps involved in the HDM, we arrive at the 

following series solutions:
u0(x,y,z,t)=(x2+y2-z2)t

( ) ( ) ( )2 2 2
1 , , ,

1
tu x y z t x y z

α

α
= + −

Γ +

( ) ( ) ( )
2

2 2 2
2 , , ,

1 2
tu x y z t x y z

α

α
= + +

Γ +

( ) ( ) ( )
3

2 2 2
3 , , ,

1 3
tu x y z t x y z

α

α
= + −

Γ +

       	              …

( ) ( ) ( )( )2 2 2, , , 1
1

n
n

n
tu x y z t x y z

n

α

α
= + + −

Γ +

Therefore the approximate solution of equation for the first n is 
given below as:   

( ) ( )( )2 2 2

1

( , , , ) 1
1

nN
n

N
n

tu x y z t x y z
n

α

α=

= + + −
Γ +∑    		               (4.9)

Now when N→∞ we obtained the follow solution                                                            

( ) ( ) ( )( )2 2 2

1

, , , 1
1

n
n

n

tu x y z t x y z
n

α

α

∞

=

= + + −
Γ +∑ 		               (4.10)

In the case of α=2 we obtain:                                                                                          
( ) ( ) ( ) ( ) ( )2 2 2 2 2 2, , , exp expu x y z t x y t z t x y z= + + − − + +

This is the exact solution for this case.
Example 3:  we consider the one-dimensional fractional wave-like 

equation:                  
( ) 21, ,

2t xxu x t x uα∂ =  0 1,x< < 1 2, 0tα< ≤ > 		            (4.11)

With the initial conditions as
u(x,0)=x2

Following carefully the steps involved in the HDM, we arrive at the 
following series solutions:

u0 (x,t)=x2

( ) ( )
2

1 ,
1

t xu x t
α

α
=

Γ +

( ) ( )
2 2

2 ,
2 1
t xu x t

α

α
=

Γ +

( ) ( )
3 2

3 ,
3 1
t xu x t

α

α
=

Γ +  

          …

( ) ( )
2

,
1

n

n
t xu x t
n

α

α
=

Γ +  
Therefore the approximate solution of equation for the first n is 

given below as:   

( )
2

1

( , )
1

nN

N
n

t xu x t
n

α

α=

=
Γ +∑  				               (4.12)

Now when N→∞ we obtained the follow solution                                                          

( ) ( ) ( )
2

2

0

,
1

n

n

t xu x t x E t
n

α
α

αα

∞

=

= =
Γ +∑

Where  Eα (tα) is the generalized Mittag-Leffler function. Note that 
in the case α=1

u(x,t)=x2 exp(t)
This is the exact solution for this case.
Example 4: In this example we consider the two-dimensional 

fractional heat-like equation
( ), ,0 , 2 , 0,0 1t xx yyu x t u u x y tα π α∂ = + < < > < ≤ 		           (4.13)

Subject to the initial condition:
( ), ,0 sin( )sin( )u x y x y= 			                                  (4.14)

Following carefully the steps involved in the HDM, we arrive at the 
following series solutions:

( )0 , , sin( )sin( )u x y t x y=

( ) ( )1
sin( )sin( ), , 2

1
t x yu x y t

α

α
= −

Γ +

( ) ( )
2

2
sin( )sin( ), , 4

2 1
t x yu x y t

α

α
=

Γ +

( ) ( )
3

3
sin( )sin( ), , 8

3 1
t x yu x y t

α

α
= −

Γ +

       	              …
( ) ( ) ( )

sin( )sin( ), , , 2
1

n
n

n
t x yu x y z t

n

α

α
= −

Γ +  

Therefore the approximate solution of equation for the first n is 
given below as:   

( ) ( )1

sin( )sin( )( , , ) 2
1

nN
n

N
n

t x yu x y t
n

α

α=

= −
Γ +∑ 			            (4.12)

Now when N→∞ we obtained the follow solution                                                          

( ) ( )
( )0

2 sin( )sin( )
, ,

1

n n

n

t x y
u x y t

n

α

α

∞

=

−
=

Γ +∑  

Note that in the case α=1
u(x,y,z,t)=sin(x)sin(y)exp(-2t)
This is the exact solution for this case.

Conclusion
We derived approximated solutions of Fractional heat-like and 

wave-like equations with variable coefficients using the relatively new 
analytical technique the HDM. We presented the brief history and 
some properties of fractional derivative concept. It is demonstrated 
that HDM is a powerful and efficient tool of FPDEs. In addition, the 
calculations involved in HDM are very simple and straightforward. 
Comparing the methodology HDM to HPM, ADM, VIM and HAM 
have the advantages. Disparate the ADM, the HDM is free from the 
need to use Adomian polynomials. In this method we do not need the 
Lagrange multiplier, correction functional, stationary conditions, or 
calculating heavy integrals, the solution obtained are noise free, which 
eliminate the complications that exist in the VIM. In contrast to the 
HAM, this method is not required to solve the functional equations 
in iteration each the efficiency of HAM is very much depended on 
choosing auxiliary parameter. In contract to HPM, we do not need 
to continuously deform a difficult problem to another that is easier 
to solve. We can easily conclude that the Homotopy Decomposition 
method is an efficient tool to solve approximate solution of nonlinear 
fractional partial differential equations.
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