ISSN: 2576-3881

Journal of Cytokine Biology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Review Article   
  • J Cytokine Biol 2022, Vol 7(5): 423

The Development of Zn (II) Porphyrins as a Photodynamic Inactivator of Antimicrobials

Siobhan M. O\'Connor*
Department of Pathology and Laboratory Medicine, University of Norway School of Medicine, Norway
*Corresponding Author : Siobhan M. O\'Connor, Department of Pathology and Laboratory Medicine, University of Norway School of Medicine, Norway, Email: SiobhanMOConnor@gmail.com

Received Date: Sep 01, 2022 / Published Date: Sep 27, 2022

Abstract

Tetra-cationic Zn (II) meso-tetrakis (N-alkylpyridinium-2 (or -3 or -4)-yl)Porphyrins (ZnPs) with progressively increased lipophilicity were synthesized to investigate how the tri-dimensional shape and lipophilicity of the photosensitizer (PS) affect cellular uptake, subcellular distribution, and photodynamic efficacy. The effect of the tridimensional shape of the molecule was studied by shifting the N-alkyl substituent attached to the pyridyl nitrogen from ortho to Meta and Para positions. Progressive increase of lipophilicity from shorter hydrophilic (methyl) to longer amphiphilic (hexyl) alkyl chains increased the phototoxicity of the ZnP PSs. PS efficacy was also increased for all derivatives when the alkyl substituents were shifted from ortho to meta, and from meta to Para positions.Both cellular uptake and subcellular distribution of the PSs were affected by the lipophilicity and the position of the alkyl chains on the periphery of the porphyrin ring. Whereas the hydrophilic ZnPs demonstrated mostly lysosomal distribution, the amphiphilic hexyl derivatives were associated with mitochondria, endoplasmic reticulum, and plasma membrane. A comparison of hexyl isomers revealed that cellular uptake and partition into membranes followed the order Para > Meta > ortho. Varying the position and length of the alkyl substituents affects (i) the exposure of cationic charges for electrostatic interactions with anionic biomolecules and (ii) the lipophilicity of the molecule. The charge, lipophilicity, and the tri-dimensional shape of the PS are the major factors that determine cellular uptake, subcellular distribution, and as a consequence, the phototoxicity of the PSs [1].

Citation: O’Connor SM (2022) The Development of Zn (II) Porphyrins as a Photodynamic Inactivator of Antimicrobials. J Cytokine Biol 7: 423.

Copyright: © 2022 O’Connor SM. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top