ISSN: 2168-9717

Journal of Architectural Engineering Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Automatic Extraction of Facade Details of Heritage Building Using Terrestrial Laser Scanning Data

Kenza Ait el Kadi1*, Driss Tahiri2, Elisabeth Simonetto3, Imane Sebari4 and Hakim Boulaassal5
1IAV Hassan II institute, Rabat, Morocco-6202
2Professor, Department of Photogrammetry, IAV Hassan II Institute, Morocco-6202
3Assistant Professor, School of Land Surveyors Le Mans, France, 72000
4Assistant Professor, Department of Photogrammetry, IAV Hassan II Institute, Morocco-6202
5Assistant Professor, University of Science and Technology, FST, Morocco-416
*Corresponding Author : Kenza Ait el kadi
IAV Hassan II institute, Rabat, Morocco-6202
Tel: +212 37 77 17 45
E-mail: k.aitelkadi@gmail.com
Received July 24, 2014; Accepted October 25, 2014; Published November 03, 2014
Citation: Aitelkadi K, Tahiri D, Simonetto E, Sebari I, Boulaassal H (2014) Automatic Extraction of Facade Details of Heritage Building Using Terrestrial Laser Scanning Data. J Archit Eng Tech 3:133. doi:10.4172/2168-9717.1000133
Copyright: © 2014 Aitelkadi K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The Terrestrial Laser Scanning (TLS) has become an interesting technology in various fields. The architecture and heritage fields benefit more and more of this technology. In the heritage field, TLS data and derived products are used to complete the digital archive of cultural sites all over the world. Among these cultural sites, we deal with the historical Moroccan sites, especially the old Medina. The rehabilitation of the old Medina requires the reconstruction of facade planes. For that purpose, Moroccan authorities need a precise inventory of all facades. The planes extracted from 3D point cloud provide the desired results. However, the manual process is too long and sometimes difficult. Automatic methods of plane recognition including the point cloud segmentation are generally based on geometric approaches which fail to identify some facade details of such heritage buildings. In this context, we propose a new automatic approach of point cloud segmentation. This approach relies on all the components of a colored point--both geometric and radiometric--combining the RGB values, laser intensity and geometric data. Our approach also includes a new method to filter the segmentation result through Delaunay triangulation. The last step of our processing is the facade and detail contour detection that is based on alpha-shape algorithm to find interior and exterior boundaries. Experiments are performed on facades presenting an example of old Medina architecture located in Casablanca’s Medina. Results show the importance of integrating all point cloud components for the detail facades extraction and planes establishment.

Keywords

Top