Water Desalination using Solar Energy: Humidification and Dehumidification Principle
Received Date: Aug 17, 2015 / Accepted Date: Sep 09, 2015 / Published Date: Sep 11, 2015
Abstract
The objective of this paper is to demonstrate an experimental investigation of a water desalination system using solar energy that applies the humidification and dehumidification principle. A prototype/test rig was designed, fabricated and assembled in order to study the effect of water flow rate and the humidifier inlet water temperature against desalinated water productivity. The system consists of a spray type with no packing bed humidifier, a copper coiled Dehumidifier, a flat plate solar water heater, an air blower, a water pump, a water flow meter, a water tank, three thermocouples and four gate water valves. The system is based on an open waterclosed air cycle. A new approach is used such that the humidifier, dehumidifier and the connecting duct between them are made of Poly Vinyl Chloride (PVC) pipes; which makes the system lighter in weight, doesn’t need insulation unlike metal sheets and anti-rust. The effect of operating parameters on the system characteristics has been controlled, measured and investigated. It was found that the hot inlet water temperature to the humidifier has a significant impact on the water productivity; they are relatively proportional, thus, the more the hot inlet water temperature increases, the more the water productivity increases. It was also found that Saline water flow rate has an impact on the water productivity but inversely proportional.
Keywords: Solar energy; Humidification; Dehumidification; Water; Desalination
Citation: Abu ElNasr M, Kamal M, Saad H, Elhelaly M (2015) Water Desalination using Solar Energy: Humidification and Dehumidification Principle. Innov Ener Res 4: 121.
Copyright: ©2015 Abu ElNasr M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Usage
- Total views: 26948
- [From(publication date): 12-2015 - Dec 18, 2024]
- Breakdown by view type
- HTML page views: 21577
- PDF downloads: 5371