Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Vitamin C containing xanthan-gelatin based hydrogels for wound dressing applications

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

Gelatin has been widely used in tissue scaffolds due to its excellent biocompatibility, low antigen property, controllable biodegradability, hemostatic property and ability to stimulate cell adhesion/ growth. In literature, xanthan, a water-soluble natural gum produced by fermentation of sugar, is used as adjuvant hydrogel in tissue engineering as well as drug delivery applications. In this study, the potential of vitamin C containing oxidized xanthan (OX) and gelatin (GEL) composite hydrogels of different OX:GEL ratios was investigated as a wound dressing for the first time in the literature. Borax, a non-toxic, inexpensive and readily available cross-linker were used for preparing the composite hydrogels. Also, CaCl2 was used as a crosslinker alongside borax to increase the degree of crosslinking and to make hydrogel durable for treatment time. Initially, concentration of crosslinkers ,boraks (Bo): CaCl2 (Ca), then ratio of OX:Gelatin (1:3, 2:3, 1:1 wt:wt) was optimized. Among groups with different crosslinker ratios (2Bo:1Ca, 1Bo:2Ca and 1Bo:1Ca wt:wt), the hydrogel crosslinked with 2Bo:1Ca wt:wt ratio had the highest structural stability. Vitamin C was used to improve skin regeneration and due to its antioxidant properties. Hydrogel groups with different OX:Gelatin ratios (1:3, 2:3, 1:1 wt:wt) were compared through study. In vitro studies were conducted with fibroblast (L929) cell line. Cell proliferation was highest on OX:Gelatin(1:3 wt:wt) hydrogel. In order to solve the problems encountered in the current dressing applications; Physicochemical, mechanical and in vitro biocompatibility properties of composite hydrogels containing vitamin C are under investigation. The authors acknowledge METU BIOMATEN for financial support and laboratory facilities.

Keywords

Google Scholar citation report
Citations : 3330

Journal of Biotechnology & Biomaterials received 3330 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page
Top