Research Article
Virtual Simulation of High Impact Shovel Loading Operation for Optimum Dumping Characterization
Ali D and Frimpong S*
Department of Mining and Nuclear Engineering, Missouri S&T, Rolla MO, USA
- *Corresponding Author:
- Frimpong S
Department of Mining and Nuclear Engineering
Missouri S&T, Rolla MO, USA
Tel: (573) 341-7617
E-mail: frimpong@mst.edu
Received Date: November 21, 2016; Accepted Date: January 07, 2017; Published Date: January 14, 2017
Citation: Ali D, Frimpong S (2017) Virtual Simulation of High Impact Shovel Loading Operation for Optimum Dumping Characterization. J Powder Metall Min 6: 149. doi:10.4172/2168-9806.1000149
Copyright: © 2017 Ali D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The use of large machinery in surface mining operations has resulted in high-impact shovel loading operations (HISLO). When large capacity shovels dump 100+ tons of loads in a single pass, large impact forces are generated resulting in high frequency shock waves. These shock waves cause severe truck vibrations, and thus, expose dump truck operators to high levels of whole body vibrations (WBV) and impact the health and safety of operators. The operator’s lower torso, lower back, legs, feet and hands are exposed to these WBV levels, which ultimately result in lower back injuries, musculoskeletal diseases and other long-term injuries. There exists no fundamental work to address this problem except a rigorous mathematical model for this impact force developed by previous researchers. This paper outlines a pioneering effort to develop a 3D virtual simulation model for a shovel dumping operation using DEM techniques in PFC3D. The model captures material dumping from a P&H 4100XPC shovel into a CAT 793D truck. Analysis of the simulation results showed that a per cent reduction of 4.88, 7.42, 11.45, 12.01, 15.08 and 17.34% can be achieved by reducing the dumping height from 7.33 m to 6.33, 6.00, 5.50, 5.33, 5.00 and 4.9 m, respectively. As a result of the cushioning effect, the reduction in the impact force magnitude ranges between 8.2% and 10.5%. This simulation model can be used to analyse any HISLO operation to reduce or possibly eliminate WBV exposures by optimizing the shovel dumping height to reduce the impact force.