Special Issue Article
Tolerance of Tree Reforestation Species (Schizolobium parahyba, Mimosa scabrella and Enterolobium contortisiliquum) to Gasoline and Diesel Phytotoxicity Assays
Priscila Jane Romano de Oliveira Gonçalves1, Lucas Coelho Vieira2, Alexandre Verzani Nogueira2, Henry Xavier Corseuil2 and Melissa Paola Mezzari2* | |
1Department of Microbiology, Center of Biological Sciences, Laboratory of Microbial Ecology, Universidade Estadual de Londrina, Londrina, Parana 86051-990, Brazil | |
2Universidade Federal de Santa Catarina, Campus Universitário Trindade, C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil | |
Corresponding Author : | Melissa Paola Mezzari Universidade Federal de Santa Catarina, Campus Universitário Trindade C.P. 476, Florianópolis, Santa Catarina, 88040-900, Brazil E-mail: mmezzari@gmail.com |
Received: March 26, 2012; Accepted: June 13, 2012; Published: June 15, 2012 | |
Citation:de Oliveira Gonçalves PJR, Vieira LC, Nogueira AV, Corseuil HX, Mezzari MP (2012) Tolerance of Tree Reforestation Species (Schizolobium parahyba, Mimosa scabrella and Enterolobium contortisiliquum) to Gasoline and Diesel Phytotoxicity Assays. J Bioremed Biodeg S7:004. doi:10.4172/2155-6199.S7-004 | |
Copyright: © 2012 de Oliveira Gonçalves PJR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at Pubmed Scholar Google |
Abstract
Schizolobium parahyba (tower tree), Mimosa scabrella (bracatinga) and Enterolobium contortisiliquum (earpod tree) are Brazilian native trees used for reforestation of degraded areas. In order to evaluate their probable success on phytoremediation of degraded areas contaminated with petroleum derived compounds, a simple short-term acute toxicity assay with diesel and gasoline was performed. Plants were germinated in contaminant-free conditions and adapted in hydroponic solution prior to the one-week hydroponic toxicity test, which was supplemented with diesel at 0, 8, 16, 33 and 66 gL-1 and gasoline at 0, 0.7, 1.5, 3 and 6 gL-1. Parameters examined were fresh weight, root and shoot length, dry biomass and transpiration rate. Phytotoxic effects on transpiration analysis from gasoline were less severe than diesel. S. parahyba, M. scabrella and E. contortisiliquum presented a maximum reduction of 59%, 76% and 82% in transpiration from diesel toxicity test. Diesel affected significantly both M. scabrella (dry weight) and S. parahyba (fresh biomass and height), whereas gasoline significantly reduced S. parahyba dry weight. Results suggest that Enterolobium contortisiliquum is the most tolerant species to diesel and Mimosa scabrella to gasoline. The present research shows the feasibility of the short-term hydroponic study as a primary evaluation of diesel and gasoline toxic responses from selected native trees.