The Role of Acute Phase Proteins in Induction of Tension of Nonspecific Resistance System in Various Clinical Phenotypes of Myasthenia
Received Date: Nov 09, 2016 / Accepted Date: Nov 29, 2016 / Published Date: Dec 02, 2016
Abstract
Introduction: All over the world autoimmune diseases and one of the classic examples of such diseases - myasthenia gravis - are on the rise. This progressing autoimmune disease characterized by pathological muscle weakness and increased fatigue. The literature describes the cause of myasthenia as production of autoantibodies to acetylcholine receptor subunits thereof. However myasthenia inherent immunological phenomena are not described in the literature, except the concentration of interleukins. Methods: All the 69 patients were examined and divided into 3 groups depending on the morphological damage of the thymus: a group of "myasthenia without morphological damage of the thymus" represented by 30 patients, a group of "myasthenia with hyperplasia of the thymus" represented 23 patients, a group of "myasthenia with thymoma" represented by 16 patients. We used these laboratory methods: microscopic determining phagocytic activity of granulocytic neutrophils; studying oxygen-dependent metabolism of neutrophil granulocytes (NBT-test); determining of C-reactive protein in blood serum; photometric determination of haptoglobin content (with rivanol); photometric determination of ceruloplasmin content by Ravin; nephelometric determination of concentration of C3 component of the complement.
Keywords: Autoimmune; Myasthenia; Metabolism; Acute phase proteins; Phagocytosis; NBTtest; C3-complement
Citation: Klimova EM, Kalashnikova JV (2016) The Role of Acute Phase Proteins in Induction of Tension of Nonspecific Resistance System in Various Clinical Phenotypes of Myasthenia. J Clin Exp Pathol 6:300. Doi: 10.4172/2161-0681.1000300
Copyright: © 2016 Kalashnikova JV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 3541
- [From(publication date): 0-2016 - Nov 18, 2024]
- Breakdown by view type
- HTML page views: 2840
- PDF downloads: 701