ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Bioremediat Biodegrad 8:411,
  • DOI: 10.4172/2155-6199.1000411

The Response of Biogas Production and Methanogenic Community to the Variation of Intermediate Vfas Produced During the Anaerobic Digestionof Food Waste

Jing Zhang1, Mao Liu1, Jiaqi Zhang1, Qiulai He1, Kai Yang1, Hongyu Wang1* and Wei Li2
1School of Civil Engineering, Wuhan University, Wuhan 430072, China
2State Key Lab of Urban Water Resources and Environment, Harbin Institute of Technology, , Harbin 150090, China
*Corresponding Author : Hongyu Wang, School of Civil Engineering, Wuhan University, Wuhan, China, Tel: +86 027 61218623, Email: hongyuwang220@126.com

Received Date: Aug 09, 2017 / Accepted Date: Sep 08, 2017 / Published Date: Sep 11, 2017

Abstract

This study focused on the effect of the variation of intermediate volatile fatty acids (VFAs) caused by the change of organic load on methane production and methanogenic community shift during anaerobic digestion (AD). Eight groups with different F/I (VSfood wastes:VSsludge) were conducted, while the inoculation sludge had a same amount. Operational performance for every groups was monitored by assessing biological activity, methane production, concentration of VFAs. The major intermediate VFAs of anaerobic digestion were acetate, propionate, iso-butyrate, n-butyrate, n-valerate and iso-valerate; and acetate and n-butyrate were the most abundant components. The increasing of F/I changed the predominant VFAs type from acetic acid to n-butyric acid, while the total VFAs concentration increased. Besides, the methane production increased and then decreased, and reached the maximum (170.3 ml/g added VS-1) at F/I of 1. The methanogenic diversity was screened using the high-throughput sequencing, which shown VFAs had a significant impact on the archaeal community as the dominant archaea shifted from Methano bacterium to Methano sarcina.

Keywords: Food waste; Anaerobic digestion; Volatile fatty acid; Methane; Methanogens

Citation: Zhang J, Liu M, Zhang J, He Q, Yang K, et al. (2017) The Response of Biogas Production and Methanogenic Community to the Variation of Intermediate VFAs Produced during the Anaerobic Digestion of Food Waste. J Bioremediat Biodegrad 7: 411 Doi: 10.4172/2155-6199.1000411

Copyright: ©2017 Zhang J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top