The Response of Biogas Production and Methanogenic Community to the Variation of Intermediate Vfas Produced During the Anaerobic Digestionof Food Waste
Received Date: Aug 09, 2017 / Accepted Date: Sep 08, 2017 / Published Date: Sep 11, 2017
Abstract
This study focused on the effect of the variation of intermediate volatile fatty acids (VFAs) caused by the change of organic load on methane production and methanogenic community shift during anaerobic digestion (AD). Eight groups with different F/I (VSfood wastes:VSsludge) were conducted, while the inoculation sludge had a same amount. Operational performance for every groups was monitored by assessing biological activity, methane production, concentration of VFAs. The major intermediate VFAs of anaerobic digestion were acetate, propionate, iso-butyrate, n-butyrate, n-valerate and iso-valerate; and acetate and n-butyrate were the most abundant components. The increasing of F/I changed the predominant VFAs type from acetic acid to n-butyric acid, while the total VFAs concentration increased. Besides, the methane production increased and then decreased, and reached the maximum (170.3 ml/g added VS-1) at F/I of 1. The methanogenic diversity was screened using the high-throughput sequencing, which shown VFAs had a significant impact on the archaeal community as the dominant archaea shifted from Methano bacterium to Methano sarcina.
Keywords: Food waste; Anaerobic digestion; Volatile fatty acid; Methane; Methanogens
Citation: Zhang J, Liu M, Zhang J, He Q, Yang K, et al. (2017) The Response of Biogas Production and Methanogenic Community to the Variation of Intermediate VFAs Produced during the Anaerobic Digestion of Food Waste. J Bioremediat Biodegrad 7: 411 Doi: 10.4172/2155-6199.1000411
Copyright: ©2017 Zhang J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 5691
- [From(publication date): 0-2017 - Dec 20, 2024]
- Breakdown by view type
- HTML page views: 4934
- PDF downloads: 757