Research Article
The Reinforcing and Rewarding Effects of Methylone, a Synthetic Cathinone Commonly Found in âÃâ¬ÃÅBath SaltsâÃâ¬ÃÂ
Lucas R Watterson1,2, Lauren Hood1,2, Kaveish Sewalia1,2, Seven E Tomek1,2, Stephanie Yahn1,2, Craig Trevor Johnson1,2, Scott Wegner1,2, Bruce E Blough1,2, Julie A Marusich1,2and M Foster Olive1,2*1Department of Psychology (LRW, LEH, KS, SET, SY, CTJ, SW, MFO) and Interdisciplinary Graduate Program in Neuroscience (MFO), Arizona State University, Tempe, Arizona, USA
2Discovery and Analytical Sciences, Research Triangle Institute, International Research Triangle Park, North Carolina, USA
- *Corresponding Author:
- M Foster Olive, Ph.D.
Department of Psychology
950 S. McAllister Ave, PO Box 871104
Tempe, Arizona, USA
E-mail: foster.olive@asu.edu
Received October 24, 2012; Accepted November 27, 2012; Published December 01, 2012
Citation: Watterson LR, Hood L, Sewalia K, Tomek SE, Yahn S, et al. (2012) The Reinforcing and Rewarding Effects of Methylone, a Synthetic Cathinone Commonly Found in “Bath Salts”. J Addict Res Ther S9:002. doi:10.4172/2155-6105.S9-002
Copyright: © 2012 Watterson LR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Methylone is a member of the designer drug class known as synthetic cathinones which have become increasingly popular drugs of abuse in recent years. Commonly referred to as “bath salts”, these amphetamine-like compounds are sold as “legal” alternatives to illicit drugs such as cocaine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Following their dramatic rise in popularity along with numerous reports of toxicity and death, several of these drugs were classified as Schedule I drugs in the United States in 2012. Despite these bans, these drugs and other new structurally similar analogues continue to be abused. Currently, however, it is unknown whether these compounds possess the potential for compulsive use and addiction. The present study sought to determine the relative abuse liability of methylone by employing intravenous self-administration (IVSA) and intracranial self-stimulation (ICSS) paradigms in rats. We demonstrate that methylone (0.05, 0.1, 0.2, and 0.5 mg/kg/infusion) dose-dependently functions as a reinforcer, and that there is a significant positive relationship between methylone dose and reinforcer efficacy. Furthermore, responding during short access sessions (ShA, 2 hr/day) appeared more robust than previous IVSA studies with MDMA. However, unlike previous findings with abused stimulants such as cocaine or methamphetamine, long access sessions (LgA, 6 hr/day) did not lead to escalated drug intake or increased reinforcer efficacy. Finally, methylone produced a dose-dependent, but statistically non-significant, trend towards reductions in ICSS thresholds. Together these results reveal that methylone may possess an addiction potential similar to or greater than MDMA, yet patterns of self-administration and effects on brain reward function suggest that this drug may have a lower potential for abuse and compulsive use than prototypical psychostimulants.