Review Article
The Preparation of Silk Fibroin Modified Pbt-Co-Pbs/Peg Composite Films and their Effects on Clinical Human Salivary Epithelial Cells Transplantation
Jie Zhu1*, Yueming Zhang1, Zhicheng Tao1, Nanwei Xu2, Liqun Wang1* and Xiaolin Zhu1
1School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, China
2Department of Orthopaedics, Changzhou No.2 People’s Hospital, Changzhou 213003, China
- Corresponding Authors:
- Jie Zhu
School of Pharmaceutical Engineering & Life Science
Changzhou University, Changzhou 213164, China
Tel: 86-519-86334597
Fax: 86-519-86334597
E-mail: zhujie_cczu@yahoo.com
- Liqun Wang
School of Pharmaceutical Engineering & Life Science
Changzhou University, Changzhou 213164, China
E-mail: wlq@cczu.edu.cn
Received date April 23, 2013; Accepted date July 08, 2013; Published date July 16, 2013
Citation: Zhu J, Zhang Y, Tao Z, Xu N, Wang L, et al. (2013) The Preparation of Silk Fibroin Modified PBT-co-PBS/PEG Composite Films and their Effects on Clinical Human Salivary Epithelial Cells Transplantation. J Biomim Biomater Tissue Eng 18:107. doi: 10.4172/1662-100X.1000107
Copyright: © 2013 Zhu J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
We reported the preparation of surface modified poly(butylene terephthalate)-co-poly(butylene succinate)-bpoly( ethylene glycol) (i.e. PBT-co-PBS/PEG) films by three methods: silk fibroin coating, SO2 plasma treatment and silk fibroin anchoring. The obtained composite films were named SF/(PBT-co-PBS/PEG), SO2/(PBT-co-PBS/PEG) and SF/ SO2/(PBT-co-PBS/PEG), respectively. Their surface properties were characterized by contact angles, surface energies and XPS. The biocompatibility of the films were further evaluated by in vitro and in vivo tests including the morphology, attachment, proliferation and viability of human salivary epithelial cells (HSG cells) and the following histological observation of the films implanting in Sprague Dawley rattus norregicus (SD rat). Results revealed that SF/SO2/(PBTco- PBS/PEG) possessed the high surface free energy (59.67 mJ/m2) and could immobilize a great amount of fibroin (SF surface coverage: 26.39 wt%), which attributed to the formation of such polar groups as hydrosulfide group, sulfonic group, carboxyl and carbonyl ones in the process of SO2 plasma treatment. The tests in vitro and in vivo suggested that the silk fibroin anchoring could significantly enhance the biocompatibility of PBT-co-PBS/PEG, which implied the potential application of fibroin modified PBT-co-PBS/PEG for clinical HSG cells transplantation in artificial salivary gland constructs.