ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change, Vol 13(6): 624
  • DOI: 10.4172/2157-7617.1000624

The effect of Atlantic Nino on the Summer Monsoon Rainfall Anomalies in Sri Lanka

Malinda Millangoda*
1School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China
2School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing, China
*Corresponding Author : Malinda Millangoda, School of Atmospheric Science, Nanjing University of Information, Science and Technology, Nanjing, China, Tel: +94774709199, Email: malinda_sbm@yahoo.com

Received Date: Jun 02, 2022 / Accepted Date: Jun 23, 2022 / Published Date: Jun 30, 2022

Abstract

Sri Lankan climate is influenced by temperature patterns in the Indian Ocean as well as the Pacific Ocean. El-Niño Southern Oscillation (ENSO) is one of the global scale climate phenomena that have significant influence on the yearto- year variability of the monsoon over South-Asia. There have been numerous studies which explores the connection between the Indian Summer Monsoon (ISM) rainfall and the Atlantic Niño. However, the teleconnections of the Atlantic Ocean with the rainfall of Sri Lanka are not extensively studied. Considering the rainfall over Sri Lanka, Atlantic Niño and the South-west monsoon (summer monsoon) peaks during the June-July-August (JJA) period. Therefore, in this study the connections of the Atlantic Ocean, specifically the Atlantic Niño with regards to the ATL3 region rainfall during June-July-August (JJA) periods were considered. It was found that the JJA rainfall anomaly had significant correlations with the SSTA of ATL3 region (Atlantic Niño/Niña). In this study it was revealed that the Atlantic Niño has a significant positive correlation with rainfall over Sri Lanka with the Niño (positive phase) resulting in increasing JJA seasonal rainfalls over Sri Lanka while the Niña (negative phase) reduces the rainfall. Then the potential mechanism of how the Atlantic Niño/Niña is linked to the seasonal rainfall JJA was studied. In doing so, Relative Humidity (RH) at lower levels of the atmosphere, Outgoing Longwave Radiation (OLR), Divergence at different levels, Zonal and Meridional wind components at different levels of the atmosphere, Moisture Flux and Moisture Flux Divergence, streamline analysis were extensively studied. In this analysis, it was revealed that low pressure areas associated with the SSTA anomaly over the Tropical Atlantic Ocean during the Niño phase has drawn the zonal winds at lower-levels of the atmosphere towards the Atlantic Ocean which has strengthened the latter part of the cross-equatorial flow prevalent during the south-west monsoon period. Cross-equatorial flow plays a vital role during the south-west monsoon period. In addition to that, the extra water vapor that is evaporated during the Niño phase is then transported over the North African continent to the Indian Ocean by the strong westerly zonal wind anomaly prevalent over the Atlantic Ocean. This moisture is then fed to the westerly flowing upper part of the cross-equatorial flow which will further enhance the rainfall over south-western part of Sri Lanka. This wind formation also has resulted in keeping the Inter Tropical Convergence Zone (ITCZ) or the Monsoon Trough (MT) over Sri Lanka for an extended period.

Citation: Millangoda M (2022) The effect of Atlantic Niño on the Summer Monsoon Rainfall Anomalies in Sri Lanka. J Earth Sci Clim Change, 13: 624. Doi: 10.4172/2157-7617.1000624

Copyright: © 2022 Millangoda M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top