ISSN: 2165-7025

Journal of Novel Physiotherapies
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Nov Physiother 2018, Vol 8(2): 384
  • DOI: 10.4172/2165-7025.1000384

Temporal Stability and Reliability of an Adaptation of the Linear Excursion Measurement Device

Umunnah Joseph Onuwa1*, Nwaefulu Violet Akuakananwa1, Ihegihu Yvonne Ebere2 and Okeke Chukwuebuka2
1Department of Medical Rehabilitation, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria
2Department of Physiotherapy, Nnamdi Azikiwe University Teaching Hospital, , Nnewi, Anambra State, Nigeria
*Corresponding Author : Umunnah Joseph Onuwa, Department of Medical Rehabilitation, Nnamdi Azikiwe University, Nnewi Campus, Nnewi, Anambra State, Nigeria, Tel: 401-261-5236, Email: jo.umunna@unizik.edu.ng

Received Date: Jan 19, 2018 / Accepted Date: Mar 12, 2018 / Published Date: Mar 20, 2018

Abstract

Background: The Linear Excursion Measurement Device (LEMD) is used to detect and objectively record changes in cervical posture over time and in quantifying the effectiveness of physiotherapy interventions for posturerelated problems.
Objective: The study investigated the temporal stability and reliability of measurements obtained from the LEMD; and the influence of time of day on the measurements obtained.
Methods: The study involved 46 volunteering apparently healthy undergraduates (mean age 22.3 ± 2.26years). Vertical and horizontal movements at the selected landmarks were obtained from the LEMD (morning and afternoon) for four consecutive days, and the excursion angles computed for each day. Data obtained was presented using descriptive statistics of mean and standard deviation, and analyzed using inferential statistics of Paired t-test and Pearson Product Moment Correlation Coefficient. Level of significance was set at <0.05.
Results: Average total time of measurement per participant for the 4 days was 145 seconds. No significant difference was found between morning and afternoon values for computed excursion angles at both landmarks; and in the average daily computed excursion angles within the 4 days (p>0.05 in each case). A significant correlation existed between day 1 and 2 (r=0.247, r=0.316), day 1 and 3 (r=0.425, r=0.478), and day 1 and 4 (r=0.274, r=0.592) at both landmarks respectively.
Conclusions: LEMD is time efficient and reliable with temporal stability. It can be used by physiotherapists for assessing and quantifying improvement in patients with cervical spine problems.

Keywords: Cervical excursion angles; Linear excursion measurement device; Temporal stability

Citation: Onuwa UJ, Akuakananwa NV, Ebere IY, Chukwuebuka O (2018) Temporal Stability and Reliability of an Adaptation of the Linear Excursion Measurement Device. J Nov Physiother 8: 384. Doi: 10.4172/2165-7025.1000384

Copyright: © 2018 Onuwa UJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top