ISSN: 2168-9652

Biochemistry & Physiology: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review   
  • Biochem Physiol 2017, Vol 6(3): 224
  • DOI: 10.4172/2168-9652.1000224

Targeting Demalication and Deacetification Methods: The Role of Carboxylic Acids Transporters

Alice Vilela*
Department of Biology and Environment, Chemistry Research Centre of Vila Real (CQ-VR), University of Tras os Montes and Alto Douro, (UTAD), 5000-801 Vila Real, Portugal
*Corresponding Author : Alice Vilela, Department of Biology and Environment, School of Life Sciences and Environment, Chemistry Research Centre of Vila Real (CQVR), University of Tras os Montes and Alto Douro, (UTAD), Portugal, Portugal, Tel: +351-25-035-0592, Email: avimoura@utad.pt

Received Date: Nov 17, 2017 / Accepted Date: Nov 28, 2017 / Published Date: Dec 05, 2017

Abstract

As weak organic acids, carboxylic acids partially dissociate in aqueous systems, like wine, establishing equilibrium between uncharged molecules (undissociated form) and their anionic form, according to the medium pH and their pKa. This property influences yeasts cell-behaviour, particularly the mechanisms by which the molecules can cross biological membranes. Occasionally wines may present an excessive amount of organic acids. In the mouth they will seem unbalanced and sometimes excessive sourness diminishes their quality. Moreover, these acids originated from grapes or from the fermentation process itself, negatively affect wine yeasts, yeast fermentation process and the final wine quality. Two of those acids are L-malic acid and acetic acid. The first one affects the wine mainly in his tastiness, making it much to sour; the second one, being a volatile compound, besides the excessive sourness, also imprints the wine with an unpleasant vinegar flavour. One approach to solving this problem is biological deacidification by Saccharomyces and non-Saccharomyces wine yeasts. To these biological processes of wine acidity bio-reduction we can call wine bio-demalication (malic acid bio-degradation) and wine biodeacetification (acetic acid consumption by yeasts).

Keywords: Malic acid; Acetic acid; Carboxylic acids transport; Wines bio-deacidification

Citation: Vilela A (2017) Targeting Demalication and Deacetification Methods: The Role of Carboxylic Acids Transporters. Biochem Physiol 6:224. Doi: 10.4172/2168-9652.1000224

Copyright: 2017 Vilela A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,distribution, and reproduction in any medium, provided the original author and source are credited.

Top