ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Sustainability of Climate Resilient Soil and Water Conservation Strategies Nexus the Practices in Tragedy at the Upper Blue Nile Basin of Northwestern Ethiopia: Economic Welfare Implication to the Farming Communities

Hunegnaw AT1*, Tegegnework GM2, Dagmawi L3, Abiot M3 and Esubalew T1

1Department of Agricultural Economics, Debre Markos University, Ethiopia

2Department of Plant Science, Debre Markos University, Ethiopia

3Department of Natural Resource Management, Debre Markos University, Ethiopia

*Corresponding Author:
Hunegnaw Amare Tesfaw
Debre Markos University
Department of Agr. Economics
Ethiopia
Tel: 251931804850
E-mail: yordanoseyuel@gmail.com

Received date: April 06, 2017; Accepted date: April 28, 2017; Published date: April 30, 2017

Citation: Hunegnaw AT, Tegegnework GM, Dagmawi L, Abiot M, Esubalew T (2017) Sustainability of Climate Resilient Soil and Water Conservation Strategies Nexus the Practices in Tragedy at the Upper Blue Nile Basin of Northwestern Ethiopia: Economic Welfare Implication to the Farming Communities. J Earth Sci Clim Change 8: 399. doi: 10.4172/2157-7617.1000399

Copyright: © 2017 Hunegnaw AT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The existing unplanned and intensive agricultural practices are sustained at the expense of our endangered natural resources and future generations advantages seem highly compromised. The study was carried out in Northwestern Ethiopia at the Northwestern basin of the Blue Nile, the lower belt of Mount Choke where intensive but traditional farming system is predominant. The study evaluated climate smart soil and water conservation practices, compared the effectiveness of climate resilience strategies across variable farming systems and attributed reasons why sustaining soil and water conservation structures is a tragedy for the farming communities. Formal interview schedule, biophysical data, key informants and focus group discussions were used to gather primary data. The collected data was analyzed employing the Tobit Econometric Model using STATA. The result indicated that the variables like size of land holding (5%), slope (1%), presence of rodents on SWC structures (5%), frequency of extension contact (1%) and training opportunity significantly influenced the longevity of climate smart SWC structures. Farmers in all observed watersheds were found to involve climate smart SWC strategies, usually by mass campaign. However, sustainability of the already made structures is unsecured and get destroyed in less than a year (a tragedy in the area), except in locations with interventions of NGO-supported projects where zero grazing is adopted. In terms of the existing advantages, biological conservation measures (plantation on ridges) were found to be the most effective and sustainable) followed by level Fanyajuu (especially in area closures). On the other hand, soil bund terraces were found to be the least sustainable. Better conservation and maintained structures were observed in highland watersheds than lowlands. Total avoidance of free grazing, public awareness regarding ecological sustainability and setting social bylaws can lead climate resilience and ecological conservation. In addition, creation of public awareness on ecological sustainability can prolong longevity of climate smart SWC structures which can in turn help farmers improve economic welfare.

Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page
Top