ISSN: 2168-9717

Journal of Architectural Engineering Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Study on Integrated Design Workflow for Natural Ventilated Tropical Office Building Using CFD

Hyeong-Ill Kim*

National University of Singapore, 4 Architecture Drive, Singapore 117566

*Corresponding Author:
Hyeong-Ill Kim
National University of Singapore
4 Architecture Drive, Singapore 117566
Tel: +65-6601 2549
E-mail: akikhi@nus.edu.sg

Received Date: September 19, 2016; Accepted Date: September 22, 2016; Published Date: September 26, 2016

Citation: Kim H (2016) Study on Integrated Design Workflow for Natural Ventilated Tropical Office Building Using CFD. J Archit Eng Tech 5: 170. doi: 10.4172/2168-9717.1000170

Copyright: © 2016 Kim H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In this study, the integration of natural ventilation techniques is proposed as a solution to the problems of tall office buildings in tropic. Issues such as the over reliance on active systems as well as urban heat island effect, developed with the evolution of these glass box buildings. It is an issue that requires a paradigm shift in perspectives when it comes to designing for sustainability.
This proposed methodology presents the application of CFD, which was predominantly an engineering tool, for modelling wind environmental conditions around a variety of building configurations. Using the software CRADLE by scStream, the simulations of the iterations can be illustrated through visual interpretations of air temperature, surface temperature, pressure difference, and wind velocity around a single building or flow between multiple buildings. Building forms will be optimized in more aerodynamic, in which CFD acted as a quantitative tool to justify how wind was able to flow through and around the form without losing much speed, or being deflected in opposing directions. These were hence the transformation techniques used in “sculpting” an optimized form for the proposed NV office tower block.

Keywords

Top