ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Review Article   
  • Adv Crop Sci Tech 2022, Vol 10(6): 6
  • DOI: 10.4172/2329-8863.1000515

Speed Breeding to Accelerate Crop Improvement

Temesgen Begna*
Ethiopian Institute of Agricultural Research, Chiro National Sorghum Research and Training Center P. O. Box 190, Chiro, Ethiopia
*Corresponding Author : Temesgen Begna, Ethiopian Institute of Agricultural Research, Chiro National Sorghum Research and Training Center P. O. Box 190, Chiro, Ethiopia, Tel: 251921196966, Email: tembegna@gmail.com

Received Date: May 26, 2022 / Published Date: Jun 20, 2022

Abstract

Global food security has become a major issue as the human population grows and the environment changes, with the current rate of improvement of several important crops inadequate to meet future demand. Crop plants have extended generation times, which contribute to the slow rate of progress. However, speed breeding has revolutionized the entire world by reducing generation time and speeding up breeding and research programs to improve crop varieties. In the absence of an integrated pre-breeding program, breeding new and high-performing cultivars with market-preferred traits can take more than ten years. After the first crosses with parental genotypes, a large amount of time, space, and resources are committed in the selection and genetic advancement stages during the early stages of breeding. Speed breeding has the ability to shorten the time it takes to develop, market, and commercialize cultivars. Crop improvement in the face of a fast changing environment and an ever-increasing human population is a major concern for scientists around the world. Current crop enhancement projects are progressing at a rate that is insufficient to meet food demand. Crop redesign is urgently needed for climate resilience, as well as long-term yield and nutrition. Crop progress is slowed significantly by the long generation time required by crop plants during the breeding process. Speed breeding is now being used on a large scale to shorten generation time and support multiple crop generations per year as a solution in this approach. Researchers are now using an integrated approach to improve breeding efficiency, combining speed breeding with current plant breeding and genetic engineering methods. Speed breeding is a promising approach for achieving nutritional security and sustainable agriculture by shortening breeding cycles for food and industrial crop enhancement. Speed breeding is a methodology that allows plant breeders to improve crop production by adjusting temperature, light duration, and intensity to boost plant development. It uses an artificial source of light, which is kept on continuously, to activate the photosynthetic process, which leads to growth and reproduction much earlier than normal. This will assist in meeting the demands of the future’s rising population. This can be accomplished using a variety of technologies, including genotyping, marker-assisted selection, high throughput phenotyping; gene editing, genomic selection, and re-domestication, all of which can be combined with speed breeding to allow plant breeders to keep up with a changing climate and growing human population.

Keywords: Speed breeding; Conventional breeding; Phenotyping; Marker assisted selection; Breeding cycle

Citation: Begna T (2022) Speed Breeding to Accelerate Crop Improvement. Adv Crop Sci Tech 10: 515. Doi: 10.4172/2329-8863.1000515

Copyright: © 2022 Begna T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top