Research Article
Role of Cerium Doping on Epitaxial Yttrium Iron Garnet Thin films
Fida Mohmed1, Syed Irfan1, Ashiq H Sofi2, Faroq A Dar2, Majid Hussain1, Abid Ahmad1and Yuan-Hua Lin1*1State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, PR China
2National Institute of Technology, Srinagar, Kashmir, 190006, India
- *Corresponding Author:
- Lin YH
State Key Lab of New Ceramics and Fine Processing
School of Materials Science and Engineering
Tsinghua University, Beijing, 100084, PR China
Tel: +86 10 6279 3001
E-mail: linyh@mail.tsinghua.edu.cn
Received Date: May 22, 2017; Accepted Date: June 02, 2017; Published Date: June 12, 2017
Citation: Mohmed F, Irfan S, Sofi AH, Dar FA, Hussain M, et al. (2017) Role of Cerium Doping on Epitaxial Yttrium Iron Garnet Thin films. J Powder Metall Min 6: 171. doi: 10.4172/2168-9806.1000171
Copyright: © 2017 Mohmed F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The present work discusses the growth optimization and magnetic properties of the Cerium doped Yttrium Iron Garnet (YIG) thin films grown through Pulsed Laser Deposition technique. The X-ray diffraction (XRD) reveals the highly crystalline, Single Phase, nature of films and the Atomic Force Microscopy (AFM) shows the films are very smooth, with root mean square roughness of less than 1 nm. Thickness of the films as calculated from the X-ray reflectivity (XRR) was found to be around 17, 35, 52, 70 and 122 nm. The Magnetic measurement shows the increase in the Saturation Magnetization, in the cerium doped YIG, but as the growth time increases, we observed a decrease in magnetic Saturation. The decrease in saturation magnetization arises due to the formation of residual Ce2O phase in the longer grown films. Longitudinal Spin Seebeck Voltage signal was observed in the films and the Platinum (Pt) deposited over the Cerium doped YIG film showed no sign of Pt magnetization.