Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Remediation Technologies for Soils Contaminated by Polychlorinated Biphenyls (PCBs)-A Review

Aneeqa Wazir* and Imran Hashmi
Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
*Corresponding Author: Aneeqa Wazir, Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan, Email: aneebatool30@gmail.com

Received Date: Aug 03, 2020 / Accepted Date: Aug 21, 2020 / Published Date: Aug 28, 2020

Citation: Aneeqa W, Imran H (2020) Remediation technologies for soils contaminated by Polychlorinated Biphenyls (PCBs): A review. J Bioremediat Biodegrad 11: 475.DOI: 10.4172/2155-6199.1000475

Copyright: © 2020 Wazir A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

PCBs can be present in degraded soils and sediments when they have been specifically regulated for use. Because of their perceived value and outstanding physical-chemical properties, some 1.2 million tons of overall PCBs have been developed and commonly used in production such as coolants, transformer lubricants, pesticides, etc. This natural for PCBs to cause a number of individual, livestock, food, and laboratory harmful reactions in organisms. Microbes are the main players of PCB depletion, carried out under both aerobic and anaerobic conditions. Microbes and plants communicate strongly inside the rhizosphere. Microbes may promote plant growth under stressful conditions that are characteristic of contaminated soils. This study discusses the new insights that continue to arise from recent studies, especially regarding both the capacity for rhizosphere in bioremediation of PCBs and the deployment of simultaneous aerobic and anaerobic degradation processes.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top