ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy

Kathryn Dana, Chetan Shende, Hermes Huang and Stuart Farquharson*

Real-Time Analyzers Inc., 362 Industrial Park Road, Unit 8, Middletown, CT 06457, USA

*Corresponding Author:
Stuart Farquharson
Real-Time Analyzers Inc., 362
Industrial Park Road, Unit 8
Middletown, CT 06457, USA
Tel: 860-635-9800-230
E-mail: stu@rta.biz

Received date: September 30, 2015 Accepted date: October 29, 2015 Published date: November 05, 2015

Citation: Dana K, Shende C, Huang H, Farquharson S (2015) Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy. J Anal Bioanal Tech 6:289. doi:10.4172/2155-9872.1000289

Copyright: © 2015 Dana K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Increases in illicit drug use and the number of emergency-room visits attributable to drug misuse or abuse highlight the need for an efficient, reliable method to detect drugs in patients in order to provide rapid and appropriate care. A surface-enhanced Raman spectroscopy (SERS)-based method was successfully developed to rapidly measure cocaine in saliva at clinical concentrations, as low as 25 ng/mL. Pretreatment steps comprising chemical separation, physical separation, and solid-phase extraction were investigated to recover the analyte drug from the saliva matrix. Samples were analyzed using Fourier-transform (FT) and dispersive Raman systems, and statistical analysis of the results shows that the method is both reliable and accurate, and could be used to quantify unknown samples. The procedure requires minimal space and equipment and can be completed in less than 16 minutes. Finally, due to the inclusion of a buffer solution and the use of multiple robust pretreatment steps, with minimal further development this method could also be applied to other drugs of interest.

Top