Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Radiation Reduction of Carbon Dioxide: A New Chemical Industry?

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

A new carbon dioxide reduction method using the products of hard radiation is proposed. The radiation is supplied
by spent fuel rod assemblies deep in ‘cooling ponds’ located next to nuclear power plants. This is a unique untapped
energy source with no carbon footprint and available in very plentiful supply. The actual radiochemistry occurs in
specially designed reaction vessels filled with water located surrounding a spent fuel rod assembly. Carbon dioxide
and reducer gases are bubbled through the reaction vessel water where they are subject to the energetic electron flux
created by gamma ray deposit. A modification of the chemical potentials dependent on the energetic electron density in
water created by a known gamma ray spectrum among other parameters, determine the carbon dioxide reaction rate.
A typical filled-to-capacity cooling pond houses a thousand fuel rod assemblies. The simplest reductant is hydrogen
gas and the desired product is carbon monoxide. Calculations reveal that such a pond could deliver a little over a half
megatonne of carbon monoxide a year. When dry-cask containers for spent fuel rod assemblies are permitted transport
to long term storage, it will also be possible to transport them to new deep pond facilities not located in conjunction with
nuclear facilities. Now there is no limitation on size scaling and a new competitive radiochemical industry is created.

Keywords

Google Scholar citation report
Citations : 5125

Journal of Earth Science & Climatic Change received 5125 citations as per Google Scholar report

Journal of Earth Science & Climatic Change peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Centre for Agriculture and Biosciences International (CABI)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Proquest Summons
  • SWB online catalog
  • Publons
  • Euro Pub
  • ICMJE
Share This Page
Top