Predicting Hydrological Response to Climate Change in the White Volta Catchment, West Africa
Received Date: Nov 16, 2014 / Accepted Date: Dec 31, 2017 / Published Date: Jan 10, 2015
Abstract
This study uses an ensemble of Regional Climate Model (REMO), to simulate and project the climate at local scale in order to investigate the hydrological impact of possible future climate change in White Volta Catchment (West Africa). The results, obtained from the REMO climate model, were compared to the observational datasets for precipitation and temperature for the period 1995-2008. The projected meteorological variables for the period 2030-2043 were used as input to the Soil and Water Assessment Tool (SWAT) hydrological model which was calibrated (R2 = 0.88 and NSE= 0.84) and validated (R2 = 0.82 and NSE= 0.79) with historical data to investigate the possible impact of climate change in the catchment. The results obtained from the investigation revealed that catchment is sensitive to climate change. With a small increase of 8% and 1.7% of the mean annual precipitation and temperature respectively, annual surface runoff, annual baseflow and evapotranspiration recorded increment of 26%, 24% and 6% respectively.
Keywords: Climate change; Hydrological process; White volta catchment; SWAT; REMO
Citation: Awotwi A, Kumi M, Jansson PE, Yeboah F, Nti IK (2015) Predicting Hydrological Response to Climate Change in the White Volta Catchment, West Africa. J Earth Sci Clim Change 6: 249. Doi: 10.4172/2157-7617.1000249
Copyright: © 2015 Awotwi A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 16559
- [From(publication date): 1-2015 - Jan 10, 2025]
- Breakdown by view type
- HTML page views: 11888
- PDF downloads: 4671