1165-158X

Cellular and Molecular Biology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Cell Mol Biol,
  • DOI: 10.4172/1165-158X.1000216

Pre-conditioning with Nicotinamide-mononucleotide Enhances Cardioprotective Potentials of Umbilical Cord-derived Mesenchymal Stem Cells in Diabetes: Role of Autophagy Flux

Qingmei Wang1 and Xuanguo Zhang2*
1Health Management Center, Shandong Provincial Third Hospital, Jinan, 250031, China
2Department of Intensive Care Unit, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, 710003, China
*Corresponding Author : Xuanguo Zhang, Department of Intensive Care Unit, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, 710003, China, Tel: +86-18702910333, Email: zxg761223@sina.com

Received Date: Sep 26, 2021 / Accepted Date: Oct 21, 2021 / Published Date: Oct 28, 2021

Abstract

Background: The application of stem cell-based therapies has promising cardioprotective impacts in Ischemia- Reperfusion (IR) injury, especially in a comorbid condition like diabetes. Preconditioning of mesenchymal stem cells (MSCs) in vitro may improve their functions in vivo. Here, we have investigated the effects of preconditioning of human umbilical cord-derived MSCs with Nicotinamide-Mononucleotide (NMN) on myocardial infarct size, and the involvement of autophagy flux in diabetic rats.

Methods: Type 2 diabetes was induced by a high-fat diet and single-dose streptozotocin in Sprague Dawley rats (250 ± 20 g). Myocardial IR injury was applied through ligation of left coronary artery occlusion. NMN-preconditioned or unconditioned-MSCs were injected intra-myocardially at early reperfusion. Myocardial hemodynamics was recorded throughout the experiment. Cardiac injury was assessed using the measurement of infarct size and CK-mB release via planimetry and ELISA methods. Mitochondrial function was evaluated by fluorometric assays. Autophagy-related protein expression was evaluated using immunoblotting.

Results: Administration of NMN or MSCs alone had no significant protective effects. NMN-preconditioned MSCs significantly reduced myocardial infarction and CK-mB levels, restored IR-induced mitochondrial reactive oxygen species, membrane depolarization and ATP production, and improved cardiac hemodynamic following IR injury in diabetic rats. IR-induced overexpression of proteins Beclin-1, P62, and LC3-II and reduction of LC3-II/LC3-I ratio were significantly reversed following treatment with preconditioned-MSCs. The administration of chloroquine, an autophagy flux inhibitor, abolished these cardioprotective effects.

Conclusion: Therefore, NMN serves as a good preconditioning modality to increase the cardioprotective efficacy of MSCs in diabetic rats and the improvement of autophagy flux may play a significant role.

Keywords: GLIPR1, Astroglioma, Proliferation, Migration, Invasion, CD63

Citation: Wang Q, Zhang X (2021) Pre-conditioning with Nicotinamidemononucleotide Enhances Cardioprotective Potentials of Umbilical Cord-derived Mesenchymal Stem Cells in Diabetes: Role of Autophagy Flux. Cell Mol Biol 67: 216. Doi: 10.4172/1165-158X.1000216

Copyright: © 2021 Wang Q, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top