Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Physiological and Molecular Studies of Transgenic Tomato (Solanumly copersicumL.) Fruits Over-expressing the Gene Solyc11g011300 Encoding a Rhamno-galacturonanLyase Enzyme

*Corresponding Author:

Copyright: © 2019  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

The plant cell wall is made up of three domains: cellulose, hemicellulose and pectin. The pectin is a very complex dynamic domain and plays the most important role in the plant cell wall physiology. Furthermore, pectin is constitutedof the polysaccharides homogalacturonan, rhamnogalacturonan I (RG-I) and rhamnogalacturonan II. The RG-I is a polysaccharide whose backbone is composed by repeated moieties of rhamnose and galacturonic acid joined by a glyosidic bond with the conformation of -L-Rhap-(1,4)--D-GalpA. The RG-I is degraded by the rhamnogalacturonanlyase (RGL) enzyme through a -elimination mechanism. Despite the biochemical mechanism of this enzyme is well known, the role of RGL during fruit ontogeny is still largely unknown.According with previous investigations, RGL enzyme isinvolved in cell wall enlargement by changing the cohesion network as a consequence of the RG-I cleavage, activation of the tomato fruit defense system by releasing RG-I fragments which acts as elicitors, mesocarp softening during fruit ripening by degradation of the middle lamellae, regulation of potato (Solanumtuberosum) cell division and periderm development in flax (Linumusitatissimum).

Keywords

Google Scholar citation report
Citations : 3330

Journal of Biotechnology & Biomaterials received 3330 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page
Top