Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Performance of Isolated Kocuria sp. SAR1 in Light Crude Oil Biodegradation

Abdullah M. El Mahdi1, Hamidi Abdul Aziz1,2*, Salem S Abu Am1, Nour Sh. El-Gendy3 and Hussein Nassar3
1School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 NibongTebal, Penang, Malaysia
2Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Penang, Malaysia
3Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
Corresponding Author : Prof. Hamidi Abdul Aziz
School of Civil Engineering
Engineering Campus
Universiti Sains Malaysia
14300 Nibong Tebal, Penang
Malaysia
Tel: + 60-45996215
Fax: +60-45941009
E-mail: cehamidi@eng.usm.my
Received June 09, 2015; Accepted July 06, 2015; Published July 08, 2015
Citation: El Mahdi AM, Aziz HA, Abu Am SS, El-Gendy NS, Nassar H (2015) Performance of Isolated Kocuria sp. SAR1 in Light Crude Oil Biodegradation. J Bioremed Biodeg 6:303. doi:10.4172/2155-6199.1000303
Copyright: © 2015 El Mahdi AM, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

In the current study; Kocuria sp. SAR1 was isolated from ‘Tobruk Refinery’ oil water pit, located along the eastern coast of Libya. The isolated bacterial strain SAR1 was characterized as an aerobic, Gram +ve, spherical-shaped, oxidase – but catalase +. Phenotypic characters and phylogenetic analysis based on the 16S rRNA gene of the isolate SAR1 showed that it was related to members of the Kocuria genus. The alignment of the 16S rRNA gene sequences of SAR1 with sequences obtained by doing a Blast searching revealed 96% similarity to Kocuria palustris strain TAGA27. Solid waste dates (SWD) and corn steep liquor (CSL) as agro-industrial products were performed to enhance the performance of Kocuria sp. SAR1 in crude oil biodegradation. During bacterial growth, high emulsifying activity to the presence of cells was observed, which is concluding the production of bio surfactant by strain SAR1. The bacterial strain showed removal ef?ciency of 68% and 70% of crude oil in 28 days when cultivated with 0.2% (w/v) of CSL and SWD, respectively. Crude oil metabolizing bacterium can secrete surfactants using agro industrial as substrates, which further enhance the hydrocarbon degradation.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top