Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Passive Cycling Limits Myofibrillar Protein Catabolism in Unconscious Patients: A Pilot Study

Jean-Charles Preiser1*, Christophe De Prato1, Amélie Harvengt1, Lauriane Peters1, Marie-Hélène Bastin1, Vincent Fraipont2, Pierre Damas1, Jean-Michel Crielaard3 and Gianni Biolo4
1Department of Intensive Care Erasme University Hospital, Belgium
2Centre Hospitalier Régional de La Citadelle, Liège, Belgium
3Department of Motricity Sciences, Centre Hospitalier Universitaire de Liège, Belgium
4Division of Internal Medicine, Department of Medical, Technological and Translational Sciences, University of Trieste, Trieste, Italy
Corresponding Author : Jean-Charles Preiser
Department of Intensive Care Erasme University Hospital 808 route de Lennik
1070 Brussels, Belgium
Tel: +3225554445
Fax: +32 25554698
E-mail: Jean-Charles.Preiser@erasme.ulb.ac.be
Received June 24, 2014; Accepted September 22, 2014; Published September 24, 2014
Citation: Preiser JC, Prato CD, Harvengt A, Peters L, Bastin MH, et al. (2014) Passive Cycling Limits Myofibrillar Protein Catabolism in Unconscious Patients: A Pilot Study. J Nov Physiother 4:225. doi: 10.4172/2165-7025.1000225
Copyright: © 2014 Preiser JC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: To test the effects of passive cycling on muscle protein metabolism in unconscious patients.

Materials and Methods: Twenty-seven patients (age 61.0 ± 16.4 years) admitted for coma (n=21) or with respiratory insufficiency requiring prolonged sedation were randomized to standard care (n=8) or passive cycling (2×30 minutes/day for 7 days, n=7). Longer-duration cycling (2×60 minutes/day, n=6) or passive cycling plus a hypercaloric hyperprotein diet (n=6) were assessed in separate groups. Ultrasound, biochemical and electrophysiological data were collected for 7 days. The thicknesses of the rectus femoris and of the vastus intermedius were measured by ultrasound. Myofibrillar protein catabolism was assessed by the urine 3- methylhistidine/creatinine ratio (3MH/creat).

Findings: Passive cycling was well tolerated and resulted in a faster decrease in 3MH/creat and a slightly less negative nitrogen balance than standard care. These changes were not influenced by a longer duration of passive cycling or by a hypercaloric hyperprotein diet. There were no differences in muscle thicknesses or electromyographic data between standard care and passive cycling groups.

Conclusions: Passive cycling in comatose or sedated patients was associated with less myofibrillar proteolysis. If confirmed in larger trials, this approach could help to prevent the long-term muscular consequences of prolonged inactivity in critically ill patients.

Top