Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Optimization of CO2 Storage in Saline Aquifers using the Raven Software

Barham S Mahmood*

Institute of Petroleum Engineering, Heriot Watt University, Edinburgh Campus, Edinburgh EH14 4AS, UK

*Corresponding Author:
Barham S Mahmood
Institute of Petroleum Engineering
Heriot Watt University, Edinburgh Campus
Edinburgh EH14 4AS, UK
Tel: + 9647703605782
E-mail: barham.sabir@ koyauniversity.org

Received Date: August 03, 2015; Accepted Date: November 25, 2015; Published Date: December 01, 2015

Citation: Mahmood BS (2015) Optimization of CO2 Storage in Saline Aquifers using the Raven Software. J Ecosys Ecograph 5:172. doi:10.4172/2157-7625.1000172

Copyright: © 2015 Mahmood BS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

CO2 storage in deep saline aquifer is still at its infancy and not yet matured for large scale industrial development due to the considerable uncertainties that still exist regarding storage capacity and safety. At the same time, because this is an expensive process, so engineers wish to store as much CO2 as possible within a particular saline formation. However, injecting huge amounts of CO2 into the particular saline formation pose significant technical issue such as pressure build-up and CO2 leakage. Therefore, in order to fully exploit it is potential, optimum injection strategies need to be investigated. In this paper we examine a realistic model of deep saline aquifer and conduct optimization study on some simulation parameters by applying multi-objective particle swarm optimization algorithm (MOPSO) to Enhance CO2 storage capacity and safety by, 1) Maximize total injected CO2, 2) Minimize pressure build-up in the center of the field and 3) Minimize CO2 leakage at the edges of the aquifer. The result of this study shows that when changing the number of wells from 5 to 7 injectors the possible storage capacity for dome A is increased by 4%. However, the maximum CO2 leakage did not reach the criterion of 0.1%/ year.
The results also indicate that the MOPSO algorithm is promising in obtaining the desired objective to improve storage capacity significantly while reducing the pressure build-up and CO2 migration. Keywords: Saline aquifer; Storage risk; Pressure build-up; MOPSO Introduction As the level of CO2 rise every year, it is necessary to find a solution to this problem. Carbone capture and storage (CCS) is considered to be an important means of reducing the levels of CO2 in the atmosphere [1]. CO2 might be stored in an oil and gas reservoir, unmineable coal

Keywords

Google Scholar citation report
Citations : 2854

Journal of Ecosystem & Ecography received 2854 citations as per Google Scholar report

Journal of Ecosystem & Ecography peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

http://sacs17.amberton.edu/

Top