ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Nicotine as Corrosion Inhibitor for 1018 Steel in 1M HCl under Turbulent Conditions

Araceli Espinoza-Vázquez*, Sergio Garcia-Galan and Francisco Javier Rodríguez-Gómez

Faculty of Chemistry, Department of Metallurgical Engineering, Universidad Nacional Autónoma de México, C.U., Distrito Federal, 04510, Mexico

*Corresponding Author:
Araceli Espinoza-Vázquez
Faculty of Chemistry
Department of Metallurgical Engineering
Universidad Nacional Autónoma de México
C.U., Distrito Federal, 04510, Mexico
Tel: 52-55-56225225
E-mail: arasv_21@yahoo.com.mx

Received date: August 26, 2015; Accepted date: September 30, 2015; Published date: October 07, 2015

Citation: Espinoza-Vázquez A, Garcia-Galan S, Rodríguez-Gómez FJ (2015) Nicotine as Corrosion Inhibitor for 1018 Steel in 1M HCl under Turbulent Conditions. J Anal Bioanal Tech 6:273. doi:10.4172/2155-9872.1000273

Copyright: © 2015 Espinoza-Vázquez A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

An electrochemical impedance technique for determining corrosion inhibition of nicotine in HCl on AISI 1018 steel under concentrations from 0 to 50 ppm found that the organic compound is a better corrosion inhibitor under static conditions. The inhibition efficiency (IE) increased with inhibitor concentration reaching an IE>90%, at 10 ppm. For [nicotine] ≤ 50 ppm, the IE value reached 71%, at 40 rpm, but diminished then to 33% upon changing the working electrode rotation speed to 500 rpm. The thermodynamic analysis showed a process ruled by physisorption according to the Langmuir adsorption model mechanism. Furthermore, the inhibition kinetics study showed that nicotine gave good protection against corrosion up to 72 hours of immersion with IE ≤ 87%. Finally, with increased temperature the IE values diminished from 90% at 25°C to 57% at 70°C, concluding that at high temperatures nicotine is ineffective at inhibition, because the temperature decrease, persistence layer easily desorbs.

Keywords

Top