ISSN: 2167-065X

Clinical Pharmacology & Biopharmaceutics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Short Communication   
  • Clin Pharmacol Biopharm 2018, Vol 7(2): 2
  • DOI: 10.4172/2167-065X.1000183

Nerve Growth Factor Mediates the Vious Cycle between Hyperactivity of Ganglionated Plexus and Atrial Fibrillation

Li-Dong Cai and Shao-Wen Liu*
Department of Cardiology, School of Medicine, Shanghai General Hospital, , China
*Corresponding Author : Shao-Wen Liu, Department of Cardiology, Shanghai General Hospital, School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai 200080, China, Tel: +86-2163240090, Fax: +86-2163240090, Email: shaowenliu2@outlook.com

Received Date: May 01, 2018 / Accepted Date: May 10, 2018 / Published Date: May 18, 2018

Abstract

Ganglionated Plexus (GP) is a complex neural network composed by intrinsic cardiac autonomic nervous system (ANS) and is mainly located in fat pads around the antrum of the pulmonary veins (PVs). Recent studies demonstrated hyperactivity of GPs and atrial fibrillation (AF) formed a vicious cycle, to be specific, hyperactivity of the cardiac GPs facilitated the initiation and maintenance of AF and the activity of cardiac GPs increased as AF continued. In addition, research has confirmed that the Nav1.8 channel is highly expressed in GPs and is closely related to activity of GPs and the inducibility of AF. Nerve growth factor (NGF) is an important neurotrophic factor and the expression of NGF in GPs is up-regulated during AF over time, which could trigger the release of SP in the heart via TRPV1 signaling pathways. Besides, SP could rapidly increase the activity of the Nav1.8 channel, demonstrating the increment of Sensory nerve action potentials. Therefore, we hypothesized that up-regulated NGF during AF could increase the activity of GPs through TRPV1-SP-Nav1.8 channel pathways and contributes to stability of AF. If this hypothesis is proved to be correct, future studies based on this link may help to find new therapeutic targets for the treatment of AF.

Keywords: Ganglionated Plexus; Atrial fibrillation; Nerve growth factor; Nav1.8 channel; TRPV1 receptor

Citation: Cai LD, Liu SW (2018) Nerve Growth Factor Mediates the Vious Cycle between Hyperactivity of Ganglionated Plexus and Atrial Fibrillation. Clin Pharmacol Biopharm 7: 183. Doi: 10.4172/2167-065X.1000183

Copyright: © 2018 Cai LD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author and source are credited.

Top