Nerve Growth Factor Mediates the Vious Cycle between Hyperactivity of Ganglionated Plexus and Atrial Fibrillation
Received Date: May 01, 2018 / Accepted Date: May 10, 2018 / Published Date: May 18, 2018
Abstract
Ganglionated Plexus (GP) is a complex neural network composed by intrinsic cardiac autonomic nervous system (ANS) and is mainly located in fat pads around the antrum of the pulmonary veins (PVs). Recent studies demonstrated hyperactivity of GPs and atrial fibrillation (AF) formed a vicious cycle, to be specific, hyperactivity of the cardiac GPs facilitated the initiation and maintenance of AF and the activity of cardiac GPs increased as AF continued. In addition, research has confirmed that the Nav1.8 channel is highly expressed in GPs and is closely related to activity of GPs and the inducibility of AF. Nerve growth factor (NGF) is an important neurotrophic factor and the expression of NGF in GPs is up-regulated during AF over time, which could trigger the release of SP in the heart via TRPV1 signaling pathways. Besides, SP could rapidly increase the activity of the Nav1.8 channel, demonstrating the increment of Sensory nerve action potentials. Therefore, we hypothesized that up-regulated NGF during AF could increase the activity of GPs through TRPV1-SP-Nav1.8 channel pathways and contributes to stability of AF. If this hypothesis is proved to be correct, future studies based on this link may help to find new therapeutic targets for the treatment of AF.
Keywords: Ganglionated Plexus; Atrial fibrillation; Nerve growth factor; Nav1.8 channel; TRPV1 receptor
Citation: Cai LD, Liu SW (2018) Nerve Growth Factor Mediates the Vious Cycle between Hyperactivity of Ganglionated Plexus and Atrial Fibrillation. Clin Pharmacol Biopharm 7: 183. Doi: 10.4172/2167-065X.1000183
Copyright: © 2018 Cai LD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 4042
- [From(publication date): 0-2018 - Nov 21, 2024]
- Breakdown by view type
- HTML page views: 3377
- PDF downloads: 665