ISSN: 2329-8863

Advances in Crop Science and Technology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Adv Crop Sci Tech 12: 706,

Multivariate Analysis of Agronomically Important Traits of Sunflower [Helianthus Annuus L] Genotypes under Rainfed Condition

Tilahun Mola*, Gudeta Nepir and Musa Jars
Ethiopian Institute Agricultural Research, Holeta Agricultural Research Center, Holeta, Ethiopia, 2 Ambo University, Guder Mamo Mezemir Campus, Guder, Ethiopia
*Corresponding Author : Tilahun Mola, Ethiopian Institute Agricultural Research, Holeta Agricultural Research Center, Holeta, Ethiopia, 2 Ambo University, Guder Mamo Mezemir Campus, Guder, Ethiopia, Email: ot0235@yahoo.com

Received Date: Jun 02, 2024 / Published Date: Jun 30, 2024

Abstract

A study on the genetic diversity of sunflower genotypes is useful in any breeding program for providing efficient variety development. The oil is considered to be of supreme quality. Sunflower is grown for oil as an edible vegetable oil and industrial purposes in the world. It can also contribute a big share in improving local edible oil production in Ethiopia. But the country has immense potential and suitable land. Sunflower genotypes were evaluated for important quantitative traits using alpha lattice design with two replications at Holeta during the 2020/2021 main cropping season to determine the genetic variability of sunflower genotypes using Multivariate Analysis of agronomically important traits. Significant variation was observed for the studied traits of the genotypes. Principal component analysis showed that the first five principal components out of 16 accounted for 74.5 % of the total variability. So, the genotypes were grouped into five genetically divergent clusters. The 1st principal component which accounted for 38.23% of total variability among sunflower genotypes mainly originated from all characters except oil content. Similarly, the PC2, PC3, PC4 and PC5 which accounted nearly for ~12.0%, ~9.35%, 8% and ~7% respectively. Two hundred twenty sunflower genotypes were grouped into five clusters with different traits. Out of two hundred twenty genotypes, 39.09% was grouped in cluster III followed by 29.09%, 19.09%, 9.54%, and 3.18% for cluster-I, V, II, and IV, respectively. Inter-cluster distances were highly significant but intra-cluster distances were non-significant compared to the chi-square value. The maximum and minimum inter-cluster distance was D2= 2023.6 & D2= 427.46 between cluster-I & II and Cluster-4 & 5 respectively. So, we can conclude that the genotypes are genetically divergent. In sunflower improvement early to medium maturing, a big head & tough stem, seed yield & number per head, medium height, hundred seed weight, oil content, seed filling percentage, head angle & shape, and reaction to stress should be emphasized traits to fill the gap of sunflower productivity through the targeted breeding approach.

Citation: Mola T (2024) Multivariate Analysis of Agronomically Important Traits ofSunflower [Helianthus Annuus L] Genotypes under Rainfed Condition. Adv CropSci Tech 12: 706.

Copyright: © 2024 Mola T. This is an open-access article distributed under theterms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author andsource are credited.

Top