ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Monitoring Glycosylation Profile and Protein Titer in Cell Culture Samples Using ZipChip CE-MS

Yan Wang#, Peng Feng#, Zoran Sosic* and Li Zang

Analytical Development, Biogen Inc., Cambridge, MA, USA

#Contributed equally

*Corresponding Author:
Zoran Sosic
Analytical Development, Biogen Inc.
Cambridge, MA, USA
Tel: 7814642000
E-mail: zoran.sosic@biogen.com

Received Date: March 30, 2017; Accepted Date: April 04, 2017; Published Date: April 08, 2017

Citation: Wang Y, Feng P, Sosic Z, Zang L (2017) Monitoring Glycosylation Profile and Protein Titer in Cell Culture Samples Using Zipchip CE-MS. J Anal Bioanal Tech 8:359. doi: 10.4172/2155-9872.1000359

Copyright: © 2017 Wang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Rapid and sensitive product quality analysis is important for real-time monitoring during biopharmaceutical development and manufacturing. However, low level of protein concentration and complex cell culture matrix pose challenges for product quality characterization at early stages of cell line selection and process development. Here, we describe a fast and simple microfluidic ZipChip CE-MS method to measure quality attributes of monoclonal antibody protein directly from cell culture supernatant. Cell culture supernatant samples were characterized with charge-based separation using microfluidic capillary electrophoresis coupled to a high-resolution mass spectrometer. Under sample reducing conditions, multiple protein glycosylation attributes were determined on the heavy chain, whereas titer information was obtained from comparison of light chain signal intensity following sample spiking-in with heavy labeled mAb. Therefore, the protein expression and product quality can be monitored using the same method with a single microfluidic device. A total volume of ten to fifty microliter of cell culture supernatant is needed, whereas analysis time is within three minutes per sample. In addition, comparison of new method with traditional RP-LC-MS method using a set of time-course bioreactor cell culture samples has been performed. A good correlation of the levels of N-glycosylation attributes between ZipChip CE-MS of crude samples and RPLCMS analysis following Protein A (ProA) purification step has been demonstrated.

Keywords

Top