Modeling Spatial and Temporal pCO2 Variability at 49°N/16.5°W and 56.5°N/52.6°W in the North Atlantic Ocean
Received Date: Oct 22, 2015 / Accepted Date: Jan 13, 2015 / Published Date: Jan 20, 2016
Abstract
Numerical models have been employed in understanding and capturing spatiotemporal CO2 trends, inter seasonal to decadal variability, and the characterization of thermal (pCO2-T) and non-thermal (pCO2-nonT) components of surface ocean pCO2 and air-sea CO2 flux variability. We employed the MIT Ocean General Circulation Model and available data from two sub polar North Atlantic observatories at 49°N, 16.5°W and 56.5°N, 52.6°W to capture in situ pCO2 observations and deconvolute bio-physical controlling processes. The model suggests that the pCCO2 cycle is marked by a summertime minimum and wintertime maximum. The physical-chemical and biological response pattern of the model is in good accordance with the observed pCO2, pCO2-T and pCO2-nonT trends. Model outputs suggest that the CO2 cycle is governed by contrasting effects of seasonal cooling and warming on one side and spring and summer net biology activities on the other side. It also predicts year-round under saturation, indicating that the region is a weak to moderate sink for CO2.
Keywords: Ocean modeling; Sea surface temperature; Biogeochemistry; Carbon dioxide; North Atlantic ocean
Citation: Benson NU, Asuquo FE (2016) Modeling Spatial and Temporal pCO2 Variability at 49°N/16.5°W and 56.5°N/52.6°W in the North Atlantic Ocean. 7: 330. Doi: 10.4172/2157-7617.1000330
Copyright: © 2016 Benson NU, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 10758
- [From(publication date): 1-2016 - Nov 21, 2024]
- Breakdown by view type
- HTML page views: 10025
- PDF downloads: 733