Review Article
Medicinal Plants, an Important Reserve of Antimycobacterial and Antitubercular Drugs: An Update
María Adelina Jiménez-Arellanes1*, Gabriel Gutiérrez-Rebolledo1, Susana Rojas-Tomé2 and Mariana Meckes- Fischer3 | ||
1Unidad de Investigación Médica (UIM) en Farmacología, México | ||
2Laboratorio de Neuropsicofarmacología, México | ||
3Centro de Diagnóstico en Metabolismo Energético y Medicina Mitocondrial S.C. (CEDIMEMM). Av, México | ||
Corresponding Author : | María Adelina Jiménez Arellanes UIM en Farmacología, Hospital de Especialidades Edif. CORSE 2° piso, CMN SXXI. Av. Cuauhtémoc 330 Col. Doctores, Delg. Cuauhtémoc, México Tel: 52-55 56276900 E-mail: adelinajim08@prodigy.net.mx |
|
Received July 16, 2014; Accepted October 24, 2014; Published October 31, 2014 | ||
Citation: Jiménez-Arellanes MA, Gutiérrez-Rebolledo G, Rojas-Tomé S, Meckes-Fischer M (2014) Medicinal Plants, an Important Reserve of Antimycobacterial and Antitubercular Drugs: An Update. J Infect Dis Ther 2:185. doi:10.4172/2332-0877.1000185 | ||
Copyright: © 2014 Jiménez-Arellanes MA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | ||
Related article at Pubmed Scholar Google |
Abstract
Background: Tuberculosis is a global and serious Public Health problem due to the increase of multidrugresistant and extensively drug-resistant cases; as a result, diverse research groups worldwide are focusing their efforts on finding novel antituberculous agents that can provide greater effectiveness, less toxicity and having a specific mechanism of action, possibly being coadjuvants in the treatments currently prescribed.
Methods: The present review covers the literature published concerning secondary metabolites of those Mexican medicinal plants and secondary metabolites isolated from them showing in vitro antimycobacterial activity with MIC <50 μg/mL against sensitive and MDR M. tuberculosis strains as well as against NTM strains. The review also includes a special section for those natural compounds or plant extracts with antitubercular activity evaluated an in vivo experimental tuberculosis model.
Results: Some pure compounds with MIC<25 μg/mL are: 2-oxo-14-(3´,4´-methylenedioxyphenyl) tetradecane, 2- oxo-16-(3´,4´-methylenedioxyphenyl)hexadecane, 5,6-dehydro-7,8-dihydro methysticin, cepharanone B and piperolactam A (from Piper sanctum), suberosin (from Arracacia tolucensis) and leubethanol (from Leucophyllum frutescens). In addition, (-)-licarin A (from Aristolochia taliscana) was active against M. tuberculosis H37Rv, 12 MDR M. tuberculosis clinical isolates and four non-tuberculous mycobacteria. On the other hand, the antitubercular activity of (-)-licarin A, ursolic acid and oleanolic acid has been determined in a TB murine experimental in vivo model; (-)-licarin A reduces the bacterial lung load and the percentage of pneumonia in animals infected with M. tuberculosis H37Rv and MDR M. tuberculosis. The mixture of ursolic and oleanolic acids showed a significant reduction of bacterial loads and pneumonia in animals infected with M. tuberculosis H37Rv and MDR M. tuberculosis.
Conclusion: Since (-)-licarin A, ursolic acid and oleanolic acid have been evaluated as antitubercular compounds, these metabolites are candidates proposed feasible to be proposed for development of antituberculosis drugs.