Mechanical Behavior of Recycled Self-Compacting Concrete Reinforced with Polypropylene Fibres
Received Date: Jun 14, 2017 / Accepted Date: Jun 25, 2017 / Published Date: Jul 31, 2017
Abstract
This paper intends to study the possibility of producing fiber recycled self-compacting concrete (FRSCC) using demolitions concrete as a coarse aggregate. Polypropylene fibers (P.P.F) were used in recycled self-compacting concrete (RSCC) with different percentages of coarse recycled concrete aggregate. Nine concrete mixtures were set up to accomplish the objective proposed at this paper. Polypropylene fibers fraction changed from 0% to 0.15% by the volume of concrete and the ratio replacement of recycled coarse aggregate with natural aggregate was 25%, 50%, 75%, and 100%. The fresh properties of (FRSCC) and (RSCC) were assessed utilizing V-funnel, L-box and slump flow tests. Flexural strength, compression strength, and tensile strength tests were performed with a specific end goal to examine mechanical properties. The results indicate that the optimum volume fraction of polypropylene fibers was (0.1%) for the mixes contained recycled coarse aggregate (75%), for optimum content of (P.P.F), the compression strength, flexural strength, and splitting tensile strength; improved by (34%), (14%), and (8.1%), respectively with consideration to control mix. Also the flexural strength and the tensile strength for the mixes were improved with increasing the fibers ratio compared with control mix
Keywords: Self-compacting concrete; Polypropylene fibers; Recycled concrete aggregate; Mechanical properties
Citation: Ibrahm HA (2017) Mechanical Behavior of Recycled Self-Compacting Concrete Reinforced with Polypropylene Fibres. J Archit Eng Tech 6: 207. Doi: 10.4172/2168-9717.1000207
Copyright: © 2017 Ibrahm HA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 6991
- [From(publication date): 0-2017 - Nov 13, 2024]
- Breakdown by view type
- HTML page views: 6035
- PDF downloads: 956