Involvement of Oxidative Stress and Nitric Oxide in Fibromyalgia Pathophysiology: A Relationship to be Elucidated
Received Date: Dec 30, 2015 / Accepted Date: Feb 28, 2016 / Published Date: Mar 02, 2016
Abstract
Fibromyalgia (FM) is a rheumatic syndrome characterized by chronic widespread pain that is often associated with other signs and symptoms such as sleep disturbances, headache, fatigue and morning stiffness. To date, the pathogenesis of fibromyalgia is unknown, several studies have been conducted in or to clarify it. Genetic and psychological abnormalities, dysfunctions of the central nervous system, endocrine and immunological disorders as well as abnormalities of the peripheral microcirculation have been identified in FM patients, demonstrating that many factors may interact in the pathogenesis of this condition. Recent research suggest that oxidative stress (OS) and nitric oxide (NO) may be directly involved in the pathophysiology of this syndrome, however, the mechanism by which such interference takes place is not fully elucidated. Currently, there is an increasing number of research papers that demonstrate both, altered concentrations of oxidants resulting from the OS mechanism, and antioxidants as for example NO among patients with FM. Thus, the purpose of this review was to gather and organize part of the information available about the participation of NO in the OS in the symptoms of FM.
Keywords: Fibromyalgia; Nitric oxide; Oxidative stress
Citation: Pernambuco AP, Schetino LPL, Carvalho LSC, Reis DA (2016) Involvement of Oxidative Stress and Nitric Oxide in Fibromyalgia Pathophysiology: A Relationship to be Elucidated. Fibrom Open Access 1:105.
Copyright: ©2016 Pernambuco AP, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Open Access Journals
Article Usage
- Total views: 16230
- [From(publication date): 3-2016 - Nov 23, 2024]
- Breakdown by view type
- HTML page views: 15364
- PDF downloads: 866