ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change 2013, Vol 4(4): 150
  • DOI: 10.4172/2157-7617.1000150

Influence of Cooling Constant on the Stirling Dish System Efficiency

A. Kaddour* and B. Benyoucef
Unit of Research Materials and Renewable Energies, University of Tlemcen, B.P 119, 13000 Tlemcen, Algeria
*Corresponding Author : A. Kaddour, Unit of Research Materials and Renewable Energies, University of Tlemcen, B.P 119, 13000 Tlemcen, Algeria, Email: kaddour.majid@gmail.com

Received Date: Jul 05, 2013 / Accepted Date: Jul 27, 2013 / Published Date: Aug 02, 2013

Abstract

Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Greenius is a powerful simulation environment for the calculation and analysis of renewable power projects such as solar thermal trough power plants, photovoltaic systems, wind parks or Dish/Stirling systems. In this work, we simulated the operation of the concentrator dish Stirling, this simulation allowed us correctly to predict the influence of the meteorological parameters (direct normal insolation, ambient temperature, air density (altitude), the angle elevation of the sun, and wind speed) on the system efficiency.

Keywords: Stirling Dish System; Cooling; Simulation

Citation: Kaddour A, Benyouce B (2013) Influence of Cooling Constant on the Stirling Dish System Efficiency. J Earth Sci Clim Change 4: 150. Doi: 10.4172/2157-7617.1000150

Copyright: ©2013 Kaddour A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top